
已知二次函数y=ax^2-4x+c的图象与坐标轴交点A(-1,0)和点B(0,-5) 问:抛物线的对称轴上是否存在
已知二次函数y=ax^2-4x+c的图象与坐标轴交点A(-1,0)和点B(0,-5)问:抛物线的对称轴上是否存在点M,使△ABM是以AB为腰的等腰三角形?若存在,请写出点...
已知二次函数y=ax^2-4x+c的图象与坐标轴交点A(-1,0)和点B(0,-5)
问:抛物线的对称轴上是否存在点M,使△ABM是以AB为腰的等腰三角形?若存在,请写出点M的坐标;若不存在,请说明理由。 展开
问:抛物线的对称轴上是否存在点M,使△ABM是以AB为腰的等腰三角形?若存在,请写出点M的坐标;若不存在,请说明理由。 展开
2个回答
展开全部
二次函数y=ax^2-4x+c的图象与坐标轴交点A(-1,0)和点B(0,-5)代入得
0=a+4+c
-5=c
a=1
二次函数表达式为
y=x^2-4x-5
设M点坐标(x,x^2-4x-5)存在,且AM=AB则
AB^2=AM^2
1^2+5^2=(x+1)^2+(x^2-4x-5)^2
(x+1)^2(x-5)^2+(x+1)^2-26=0
这个方程比较难解
不过可以看出
x=0时成立
这样解得一个M(0,-5)
说明至少存在一个M满足条件。
0=a+4+c
-5=c
a=1
二次函数表达式为
y=x^2-4x-5
设M点坐标(x,x^2-4x-5)存在,且AM=AB则
AB^2=AM^2
1^2+5^2=(x+1)^2+(x^2-4x-5)^2
(x+1)^2(x-5)^2+(x+1)^2-26=0
这个方程比较难解
不过可以看出
x=0时成立
这样解得一个M(0,-5)
说明至少存在一个M满足条件。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询