![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
在三角形ABC中,已知角A,B,C的对边分别是a,b,c,且a^2+b^2-c^2=√3ab
1个回答
展开全部
c²=a²+b²-2abcosC
a²+b²-c²=2abcosC
a²+b²-c²=√3ab
所以 cosC=√3/2
C=30°
m=2cos²(A/2)-sinB-1 0<A≤2π/3
=cosA-sinB
=cosA-sin(A+C)
=cosA-sinAcosC-cosAsinC
=1/2cosA-√3/2sinA
=cos(A+π/3)
π/3< A+π/3≤π
m∈[-1,1/2)
a²+b²-c²=2abcosC
a²+b²-c²=√3ab
所以 cosC=√3/2
C=30°
m=2cos²(A/2)-sinB-1 0<A≤2π/3
=cosA-sinB
=cosA-sin(A+C)
=cosA-sinAcosC-cosAsinC
=1/2cosA-√3/2sinA
=cos(A+π/3)
π/3< A+π/3≤π
m∈[-1,1/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询