3个回答
展开全部
F(x)=[sinx,cosx]∫e^[x√(1-y²)]dy,求F′(x)
解:公式:(d/dx){[a(x),b(x)]∫f(y,x)dy}=[a(x),b(x)]∫[(∂f/∂x)dy]+f(b,x)(db/dx)-f(a,x)(da/dx)
F′(x)=[sinx,cosx]∫{e^[x√(1-y²)]√(1-y²)dy}+e^[x√(1-cos²x)](-sinx)-e^[x√(1-sin²x)]cosx
=[sinx,cosx]∫{e^[x√(1-y²)]√(1-y²)dy}-sinxe^(xsinx)-cosxe^(xcosx)
下面求积分:[sinx,cosx]∫{e^[x√(1-y²)]√(1-y²)dy}=?
令y=sinu,dy=cosudu,故∫{e^[x√(1-y²)]√(1-y²)dy=∫cos²ue^(xcosu)du=∫[(1+cos2u)/2]e^(xcosu)du
=(1/2)∫e^(xcosu)du+(1/2)∫(cos2u)e^(xcosu)du
=(x/2)e^(xcosu)+(1/2){[e^(xcosu)](2sin2u+xcos2u)/(x²+4)
=(x/2)e^(xcosarcsiny)+(1/2)[e^(xcosarcsiny)(sin2arcsiny+xcos2arcsiny)/(x²+4)
=(x/2)e^[x√(1-y²)]+(1/2)[e^[x√(1-y²)][2y√(1-y²)+x(1-2y²)]/(x²+4),故:
[sinx,cosx]∫{e^[x√(1-y²)]√(1-y²)dy}=(x/2)e^(xsinx)+(1/2)[e^(xsinx)][2cosxsinx+x(1-2cos²x)]/(x²+4)
-(x/2)e^(xcosx)-(1/2)[e^(xcosx)][2sinxcosx+x(1-2sin²x)]/(x²+4)
=(x/2)[e^(xsinx)-e^(xcosx)]+{[e^(xsinx)][sin2x-xcos2x]-[e^(xcosx)][sin2x+xcos2x]}/2(x²+4)
F′(x)=(x/2)[e^(xsinx)-e^(xcosx)]+{[e^(xsinx)](sin2x-xcos2x)-[e^(xcosx)](sin2x+xcos2x)}/2(x²+4)
-sinxe^(xsinx)-cosxe^(xcosx)
能不能再进一步化简,你自己看看吧!够烦人的!
解:公式:(d/dx){[a(x),b(x)]∫f(y,x)dy}=[a(x),b(x)]∫[(∂f/∂x)dy]+f(b,x)(db/dx)-f(a,x)(da/dx)
F′(x)=[sinx,cosx]∫{e^[x√(1-y²)]√(1-y²)dy}+e^[x√(1-cos²x)](-sinx)-e^[x√(1-sin²x)]cosx
=[sinx,cosx]∫{e^[x√(1-y²)]√(1-y²)dy}-sinxe^(xsinx)-cosxe^(xcosx)
下面求积分:[sinx,cosx]∫{e^[x√(1-y²)]√(1-y²)dy}=?
令y=sinu,dy=cosudu,故∫{e^[x√(1-y²)]√(1-y²)dy=∫cos²ue^(xcosu)du=∫[(1+cos2u)/2]e^(xcosu)du
=(1/2)∫e^(xcosu)du+(1/2)∫(cos2u)e^(xcosu)du
=(x/2)e^(xcosu)+(1/2){[e^(xcosu)](2sin2u+xcos2u)/(x²+4)
=(x/2)e^(xcosarcsiny)+(1/2)[e^(xcosarcsiny)(sin2arcsiny+xcos2arcsiny)/(x²+4)
=(x/2)e^[x√(1-y²)]+(1/2)[e^[x√(1-y²)][2y√(1-y²)+x(1-2y²)]/(x²+4),故:
[sinx,cosx]∫{e^[x√(1-y²)]√(1-y²)dy}=(x/2)e^(xsinx)+(1/2)[e^(xsinx)][2cosxsinx+x(1-2cos²x)]/(x²+4)
-(x/2)e^(xcosx)-(1/2)[e^(xcosx)][2sinxcosx+x(1-2sin²x)]/(x²+4)
=(x/2)[e^(xsinx)-e^(xcosx)]+{[e^(xsinx)][sin2x-xcos2x]-[e^(xcosx)][sin2x+xcos2x]}/2(x²+4)
F′(x)=(x/2)[e^(xsinx)-e^(xcosx)]+{[e^(xsinx)](sin2x-xcos2x)-[e^(xcosx)](sin2x+xcos2x)}/2(x²+4)
-sinxe^(xsinx)-cosxe^(xcosx)
能不能再进一步化简,你自己看看吧!够烦人的!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |