求极限lim(x趋于无穷)cos√(x+1)-cos√x,用夹逼准则
2个回答
展开全部
设t=(√(x+1)+√x) (√(x+1)-√x)/2=1/(2(√(x+1)+√x))=1/(2t)
cos√(x+1)-cos√x
=-2sin((√(x+1)+√x)/2)sin((√(x+1)-√x)/2)
=-2sin(t/2)*sin(1/(2t))
<=|2sin(t/2)*sin(1/(2t))|
=2|sin(t/2)||sin(1/(2t))|
<=2|sin(1/(2t))|
即-2sin(1/(2t))<=cos√(x+1)-cos√x<=2sin(1/(2t))
当x趋于无穷时,1/2t→0,sin(1/2t)→0,0<=lim(x趋于无穷)cos√(x+1)-cos√x<=0
所以lim(x趋于无穷)cos√(x+1)-cos√x=0
cos√(x+1)-cos√x
=-2sin((√(x+1)+√x)/2)sin((√(x+1)-√x)/2)
=-2sin(t/2)*sin(1/(2t))
<=|2sin(t/2)*sin(1/(2t))|
=2|sin(t/2)||sin(1/(2t))|
<=2|sin(1/(2t))|
即-2sin(1/(2t))<=cos√(x+1)-cos√x<=2sin(1/(2t))
当x趋于无穷时,1/2t→0,sin(1/2t)→0,0<=lim(x趋于无穷)cos√(x+1)-cos√x<=0
所以lim(x趋于无穷)cos√(x+1)-cos√x=0
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询