设椭圆c:x^2/a^2+y^2b^2=1,过点(0,4),离心率为3/5, 5

1求c的方程,2求过点(3,0)且斜率为4/5的直线被C所截线段的中点坐标... 1求c的方程,2求过点(3,0)且斜率为4/5的直线被C所截线段的中点坐标 展开
 我来答
百度网友bed2d11
2013-12-06 · TA获得超过217个赞
知道小有建树答主
回答量:244
采纳率:50%
帮助的人:81.3万
展开全部
(1)由于椭圆过点(0,4),从而 b=4,又e=c/a=3/5,得c=(3/5)a
所以 a²=b²+c²=16+(9/25)a²,a²=25,a=5
所以 椭圆的方程为x²/25+y²/16=1
(2) 用点差法。
设直线与椭圆交于A(x1,y1),B(x2,y2),中点为M(x0,y0),则x1+x2=2x0,y1+y2=2y0,且
16x1²+25y1²=144 (1)
16x2²+25y2²=144 (2)
(2)-(1),得 16(x2-x1)(x1+x2)+25(y2-y1)(y1+y2)=0
所以 AB的斜率k=(y2-y1)/(x2-x1)=-16(x1+x2)/[25(y1+y2)]=-16x0/(25y0)=4/5
即 -4x0=5y0 (3)
又点(3,0)和M也在直线AB上,从而k=y0/(x0-3)=4/5
即 4x0-12=5y0 (4)
由(3)(4),解得x0=3/2,y0=-6/5
中点坐标为(3/2,-6/5)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式