ε-N定义证明 lim(n→∞)(3n^2+n)/(2n^2-1)=3/2,求详细的解答过程 1个回答 #热议# 空调使用不当可能引发哪些疾病? ccb173810 2011-10-07 · TA获得超过629个赞 知道小有建树答主 回答量:298 采纳率:0% 帮助的人:380万 我也去答题访问个人页 关注 展开全部 |(3n^2+n)/(2n^2-1)-3/2|=|(2n+3)/2(2n^2-1)|<|=|(2n+3)/(4n^2)|<1/n<ε,N=[1/ε]任意ε>0,存在N=[1/ε],使得n>N,|(3n^2+n)/(2n^2-1)-3/2|<ε,得证 本回答被提问者采纳 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 广告您可能关注的内容数学高中数学_Kimi-AI写作-5分钟生成高质量文章kimi.moonshot.cn查看更多 其他类似问题 2022-10-25 lim_(n)(2n+3)/(n-1)= 2022-05-27 lim(3^(n+1)-2^n)/(3^n+2^(n-1))= 2022-08-20 lim((2^n+1)+(3^n+1))/(2^n+3^n) 2022-08-05 lim (1/n^3+2^2/n^3+3^2/n^3+……n^2/n^3)=? 1+2^2+...+n^2=[n(n+1)(2n+1)]/6 2014-04-21 lim [4^n -3^(n +1)]/2^(2n +1)+3^n +1 2020-09-12 lim(n/n^2+n/n^3) 2019-10-11 lim n→∞ (n+1)/(2n-3)= 4 2014-09-25 证明lim n→∞3n²+n/2n²-1=2/3 2 更多类似问题 > 为你推荐: