
问几道数学题
1.在复数集内因式分解x^3-y^3=2.2x^3-4x^2+bx-2=0有一个实根为1,另外两个根为虚根,则此方程的解是3.方程x^2-x+1=0的两个根为a,b,则a...
1.在复数集内因式分解x^3-y^3=
2.2x^3-4x^2+bx-2=0有一个实根为1,另外两个根为虚根,则此方程的解是
3.方程x^2-x+1=0的两个根为a,b,则a^10+b^10=
4.在数列an中,Sn=n^2/(2n+2),求liman 展开
2.2x^3-4x^2+bx-2=0有一个实根为1,另外两个根为虚根,则此方程的解是
3.方程x^2-x+1=0的两个根为a,b,则a^10+b^10=
4.在数列an中,Sn=n^2/(2n+2),求liman 展开
展开全部
1、x^3-y^3=(x-y)(x^2+xy+y^2)=(x-y)[x-(-1+√3i)y] [x-(-1-√3i)y]
=(x-y)[x+(1-√3i)y] [x+(1+√3i)y]
2、2-4+b-2=0,b=4,
原方程为:.2x^3-4x^2+4x-2=0,
提取x-1公因式,2(x-1)(x^2-x+1)=0,
x2、3=(1±√3i)/2.
3、由2题解出a=(1+√3i)/2,b=(1-√3i)/2
化成三角式,a=cos(π/3)+isin(π/3),
b=cos(-π/3)+isin(-π/3),
根据棣美弗定理,
a^10+b^10=[ cos(π/3)+isin(π/3)]^10+[ cos(-π/3)+isin(-π/3)]^10
= cos(10π/3)+isin(10π/3)+ cos(-10π/3)+isin(-10π/3)
= cos(10π/3)+isin(10π/3)+ cos(10π/3)-isin(10π/3)
= 2cos(10π/3)
=2cos(2π+π+π/3)
=-2cos(π/3)
=-2*(1/2)
=-1.
4、Sn=n^2/(2n+2),
a(n)=S(n)-S(n-1)= n^2/(2n+2)-(n-1)^2/[2(n-1)+2]
=(n^2+n-1)/[2n(n+1)],
lim[n→∞]a(n)= lim[n→∞] (n^2+n-1)/[2n(n+1)]
= lim[n→∞](1+1/n-1/n^2)/[2(1+1/n)]
=1/2.
=(x-y)[x+(1-√3i)y] [x+(1+√3i)y]
2、2-4+b-2=0,b=4,
原方程为:.2x^3-4x^2+4x-2=0,
提取x-1公因式,2(x-1)(x^2-x+1)=0,
x2、3=(1±√3i)/2.
3、由2题解出a=(1+√3i)/2,b=(1-√3i)/2
化成三角式,a=cos(π/3)+isin(π/3),
b=cos(-π/3)+isin(-π/3),
根据棣美弗定理,
a^10+b^10=[ cos(π/3)+isin(π/3)]^10+[ cos(-π/3)+isin(-π/3)]^10
= cos(10π/3)+isin(10π/3)+ cos(-10π/3)+isin(-10π/3)
= cos(10π/3)+isin(10π/3)+ cos(10π/3)-isin(10π/3)
= 2cos(10π/3)
=2cos(2π+π+π/3)
=-2cos(π/3)
=-2*(1/2)
=-1.
4、Sn=n^2/(2n+2),
a(n)=S(n)-S(n-1)= n^2/(2n+2)-(n-1)^2/[2(n-1)+2]
=(n^2+n-1)/[2n(n+1)],
lim[n→∞]a(n)= lim[n→∞] (n^2+n-1)/[2n(n+1)]
= lim[n→∞](1+1/n-1/n^2)/[2(1+1/n)]
=1/2.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询