条件收敛.
(1)因为|(-1)^n/(n+1)|=1/(n+1),而∑1/(n+1)发散,所以∑|(-1)^n/(n+1)|发散;
(2)因为1/(n+1)单调递减且lim(n—>无穷)1/(n+1)=0,所以由Leibniz交错级数判别法知∑(-1)^n/(n+1)收敛.
综上,级数条件收敛.
扩展资料
条件收敛
一般的级数u1+u2+...+un+...
它的各项为任意级数。
如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,
则称级数Σun绝对收敛。
如果级数Σun收敛,
而Σ∣un∣发散,
则称级数Σun条件收敛。
条件收敛。
分析过程如下:
(1)因为|(-1)^n/(n+1)|=1/(n+1),而∑1/(n+1)发散,所以∑|(-1)^n/(n+1)|发散;
(2)因为1/(n+1)单调递减且lim(n—>无穷)1/(n+1)=0,所以由Leibniz交错级数判别法知∑(-1)^n/(n+1)收敛。
综上,幂级数(-1)^n•1/n+1条件收敛。
扩展资料:
绝对收敛一般用来描述无穷级数或无穷积分的收敛情况。如果级数ΣUn各项的绝对值所构成的级数Σ|Un|收敛,则称级数ΣUn绝对收敛,级数ΣUn称为绝对收敛级数。绝对收敛级数一定收敛。
若函数f(x)在[a,b]上可积,且|f(x)|的无穷积分(从a到+∞)上收敛,则称 f(x) 的无穷积分(从a到+∞)绝对收敛。绝对收敛一定收敛。
由条件收敛级数重排后所得的新级数,即使收敛,也不一定收敛于原来的和数。而且,条件收敛级数适当排列后,可得到发散级数,或收敛于事先任意指定的数。