配方只适用于等式方程,配方就是把等式通过左右两边同时加或减去一个数,使这个等式的左边的式子变成完全平方式的展开式,再因式分解就可以解方程了,也就是说配方法这个方法是根据完全平方公式:(a+或-b)平方=a平方+或-2ab+b平方 得出的。
比如你说的这个式子,不是等式就不能用配方法来解,我来举个例子:
2a²-4a+2=0
a²-2a+1=0 (二次项系数要先化为1,方便使用配方法解题,所以等式两边同除二次项系数2)
(a-1)²=0 (上一步的式子发现左边是完全平方式,所以根据完全平方公式,将a²-2a+1因式分解为(a-1)²,这样就完成了配方)
a-1=0(最后等式两边同时开平方)
a=1(得到结果)
扩展资料:
在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。
配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。等式两边加上y2 = (b/2a)2,可得:
这个表达式称为二次方程的求根公式。
参考资料:百度百科-配方法
比如你说的这个式子,不是等式就不能用配方法来解,我来举个例子:
2a²-4a+2=0
a²-2a+1=0 (二次项系数要先化为1,方便使用配方法解题,所以等式两边同除二次项系数2)
(a-1)²=0 (上一步的式子发现左边是完全平方式,所以根据完全平方公式,将a²-2a+1因式分解为(a-1)²,这样就完成了配方)
a-1=0(最后等式两边同时开平方)
a=1(得到结果)
我讲的已经很清楚了,希望你能理解
3(a-5/6)² - 3(5/6)²+2