全等三角形证明题(初二上册)
如图,已知AD为△ABC中线,AB⊥AE,AB=AE;AC⊥AF,AC=AF,求证:EF=2AD(注:未说AB=AC)...
如图,已知AD为△ABC中线,AB⊥AE,AB=AE;AC⊥AF,AC=AF,求证:EF=2AD
(注:未说AB=AC) 展开
(注:未说AB=AC) 展开
2个回答
2011-10-07
展开全部
证明:
延长AD到点G,使DG=AD,连接BG
则可得△BGD≌△CDA
∴BG=AC=AF,∠G=∠CAG
∴AC∥BG
∴∠ABG+∠CAB=180°
∵∠BAE=∠CAF=90°
∴∠EAF+∠CAB=180°
∴∠EAF=∠ABG
∵AE=AB
∴△EAF≌△ABG
∴EF=AG=2AD
延长AD到点G,使DG=AD,连接BG
则可得△BGD≌△CDA
∴BG=AC=AF,∠G=∠CAG
∴AC∥BG
∴∠ABG+∠CAB=180°
∵∠BAE=∠CAF=90°
∴∠EAF+∠CAB=180°
∴∠EAF=∠ABG
∵AE=AB
∴△EAF≌△ABG
∴EF=AG=2AD
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询