数学分析,级数考研题

 我来答
百度网友9e9b632
推荐于2018-11-14 · TA获得超过847个赞
知道小有建树答主
回答量:247
采纳率:50%
帮助的人:25.9万
展开全部
设f(x) = x^a, 由Lagrange中值定理,
对任意x ∈ (0,1), 存在y ∈(x,1),
使(f(1)-f(x))/(1-x) = f'(y) = ay^(a-1) > a (∵y ∈(0,1), a ∈(0,1)),
即得(1-x^a)/a > 1-x.

在上式中取x = n/(n+1), 得(1-n^a/(n+1)^a)/a > 1/(n+1),
整理得1/(n^a(n+1)) < 1/a·(1/n^a-1/(n+1)^a).
对n取遍全体正整数求和, 即得:
∑{1 ≤ n} 1/(n^a(n+1)) < 1/a·∑{1 ≤ n} (1/n^a-1/(n+1)^a) = 1/a.
首先, 易知f(x)在[0,1]有上界,
从而可设M为f(x)在[0,1]上的上确界.
对任意正整数k, 由f[k](x) ≥ f(x),
可知f[k](x)在[0,1]上的最大值 ≥ M.
因此集合E[k] = {x ∈ [0,1] | f[k](x) ≥ M} ≠ ∅.

由f[k](x)连续, E[k]为闭集.
又由f[1](x) ≥ f[2](x) ≥..., 有E[1] ⊇ E[2] ⊇...
即E[k]是[0,1]中一列递减的非空闭集.
由"闭集套定理", 它们的交非空.
即存在c ∈ [0,1], 满足f[k](c) ≥ M, 对任意k成立.
于是f(c) ≥ M, 即得f(x)在x = c处取得最大值.

所谓"闭集套定理"是指"闭区间套定理"的简单推广,
一样可使用有限覆盖定理证明.
记F(x) = ∫{0,x} sin(t)/t dt (x ≥ 0).
则F(x)在x = π, 3π, 5π,...处取得极大值,
进而可知其在x = π处取得最大值.
另一方面F(x)在x = 2π, 4π, 6π,...处取得极小值,
进而可知其在x = 0处取得[0,+∞)上的最小值.
因此|∫{a,b} sin(t)/t dt| = |F(b)-F(a)| ≤ F(π)-F(0) ≤ 3.
对0 ≤ a < b, 可设x[n-1] < a ≤ x[n], x[m] ≤ b < x[m+1].
|∫{a,b}f(x)dx| ≤ |∫{a,x[n]}f(x)dx|+|∫{x[n],x[m]}f(x)dx|+|∫{x[m],b}f(x)dx|
≤ |∫{x[n-1],x[n]}f(x)dx|+|∫{x[n],x[m]}f(x)dx|+|∫{x[m],x[m+1]}f(x)dx|.
当a → +∞, 有n, m → ∞.
根据Cauchy收敛准则, 右端三项都收敛到0.
从而|∫{a,b}f(x)dx|也收敛到0, 再由Cauchy收敛准则即知积分收敛.
可以用积分余项.
设g(x)为f(x)的n阶导数, 则g(x)在[a,a+r]非负.
对x ∈ [a,a+r], 展开到n-1阶的余项为:
R(x) = 1/(n-1)!·∫{a,x} g(t)·(x-t)^(n-1) dt.
易见(x-t)/(a+r-t)关于t单调递减, 故(x-t)/(a+r-t) ≤ (x-a)/r.
因此R(x) ≤ 1/(n-1)!·((x-a)/r)^(n-1)·∫{a,x} g(t)·(a+r-t)^(n-1) dt
≤ 1/(n-1)!·((x-a)/r)^(n-1)·∫{a,a+r} g(t)·(a+r-t)^(n-1) dt
= ((x-a)/r)^(n-1)·R(a+r)
≤ ((x-a)/r)^(n-1)·f(a+r).
对x ∈ [a,a+r), 上式随n → ∞收敛到0.
对我来说, 第1步裂项是比较自然的.
后面Cauchy不等式的用法技巧性较强,
在某些分析领域, 可以见到这种估计目标在两端都出现的技术,
不过我学的不好, 就不妄加评论了.
我的话会证明∑k/A[k]有界, 因为见过这道题目.
匿名用户
2017-08-24
展开全部
数学专业考研的参考书选择注:加【】的是我认为最好的!资料只是作为参考,学数学独立思考很重要!一、数学分析:1、复旦大学的教材(欧阳光中等编,高教社)【2】、数学分析中的典型问题与方法(裴礼文,高教社)【3】、数学分析题解精粹(钱吉林,崇文书局)4、数学分析习题集(北大林源渠、方企勤、李正源、廖可人编,高教社)5、数学分析解体指南(北大林源渠、方企勤)6、数学分析习题课讲义7、数学分析经典习题集解8、数学分析习题精解9、数学分析导教.导学.导考(复旦第二版)二、高等代书:【1】、高等代书新方法(王品超,矿业大学出版社)【2】、高等代数习题解(杨子胥,山东科技)3、高等代数题解精粹(钱吉林,中央民族大学出版社)4、代数学词典(钱吉林)5、北大教材6、高等代数解题方法与技巧7、高等代数(北大.第三版)导教.导学.导考仅供参考祝你成功!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
algbraic
2014-09-26 · TA获得超过4925个赞
知道大有可为答主
回答量:1281
采纳率:100%
帮助的人:761万
展开全部
设f(x) = x^a, 由Lagrange中值定理,
对任意x ∈ (0,1), 存在y ∈(x,1),
使(f(1)-f(x))/(1-x) = f'(y) = ay^(a-1) > a (∵y ∈(0,1), a ∈(0,1)),
即得(1-x^a)/a > 1-x.

在上式中取x = n/(n+1), 得(1-n^a/(n+1)^a)/a > 1/(n+1),
整理得1/(n^a(n+1)) < 1/a·(1/n^a-1/(n+1)^a).
对n取遍全体正整数求和, 即得:
∑{1 ≤ n} 1/(n^a(n+1)) < 1/a·∑{1 ≤ n} (1/n^a-1/(n+1)^a) = 1/a.
更多追问追答
追问
哈哈,,大神老师,谢谢关照^o^
大神老师,,今天我问了一个问题,,要是没人回答,大神老师你有空看看,
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-08-24
展开全部
你好!你没做错,是答案写错了,前面漏了系数1/3。经济数学团队帮你解答,请及时采纳。谢谢!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
徐忠震
2016-02-07 · TA获得超过6512个赞
知道大有可为答主
回答量:2473
采纳率:93%
帮助的人:950万
展开全部
题呢。打回去吧。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式