已知如图,在四边形ABCD中,AC平分∠BAD,CM⊥AB于M 且AB+AD=2AM,求证:∠B+LD=180°

jiajunnwpu
2011-10-09 · 超过20用户采纳过TA的回答
知道答主
回答量:54
采纳率:0%
帮助的人:48.4万
展开全部
在AM上取点E令AE=AD,连接CE
∵AB+AD=2AM,AB=AM+BM
∴BM+AD=AM,而AE=AD
∴EM=MB
明显看出△ADC≡△ACE,则:∠D=∠AEC
又∵∠CEM=∠B(明显,不用证明)和∠AEC+∠CEM=180°
∴∠B+∠D=180°
应该可以的,是初中的题目吧
sh5215125
高粉答主

2011-10-08 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.4万
采纳率:96%
帮助的人:5857万
展开全部
证明:
设AD>AB,作CN⊥AB交AB延长线于N
∵AC平分∠BAD
∴∠NAC=∠MAC
又∵∠CMA=∠CNA=90º,AC=AC
∴⊿CMA≌⊿CNA(AAS)
∴AM=AN,CM=CN
∵AB+AD=2AM
AD=AM+MD
AB=AN-BN
∴MD=BN,CM=CN
∵Rt⊿BNC≌Rt⊿DMC
∴∠NBC=∠D
∵∠ABC+∠NBC=180º
∴∠ABC+∠D =180º
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式