高等数学第六版下册

y''-2y'+5y=e^xsin2x怎么解,请给出完成过程... y''-2y'+5y=e^xsin2x怎么解,请给出完成过程 展开
 我来答
sjh5551
高粉答主

2014-08-27 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:7965万
展开全部
y''-2y'+5y=e^xsin2x,
特征方程 r^2-2r+5=0, r=1±2i.
则特解形式设为 y=xe^x(Asin2x+Bcos2x),
得 y'=e^x[(A+Ax-2Bx)sin2x+(B+Bx+2Ax)cos2x],
y''=e^x[(A-2B-3Ax-4Bx)sin2x+(B+2A+4Ax-3Bx)cos2x]
代入微分方程,得 -A-2B=1, 2A-B=0, 解得 A=-1/5, B=-2/5.
则微分方程的通解是
x=e^x(C1cos2x+C2sin2x)-(1/5)xe^x(2cos2x+sin2x)
追问
为什么特解的形式为Y=xe^x(Asin2x+Bcos2x)
追答
因为 非齐次项 e^(μx)sinλx,   μ±λi 是特征方程的共轭复根。
书上都有的,你去查一下即可。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式