
大一微积分
证明:如果函数f(x)当x→x零时的极限存在,则函数f(x)在x零的某个去心领域内有界。求证明过程,不会做啊...
证明:如果函数f(x)当x→x零 时的极限存在,则函数
f(x)在x零 的某个去心领域内有界。求证明过程,不会做啊 展开
f(x)在x零 的某个去心领域内有界。求证明过程,不会做啊 展开
1个回答
展开全部
这根据极限定义就可以证明啊?
极限定义是:对于任意 e>0, 存在s,使得当|x-0| <s成立时,|f(x)-f(0)| <e成立,其中f(0)是f(x)在x=0处的极限
既然极限存在,我们取e=1,则必然存在s,使得在0的邻域(-s,s)内,|f(x)-f(0)|<1
所以 f(0)-1 < f(x) < f(0)+1
|f(x)| < max(|f(0)-1|,|f(0) +1|) 显然有界
极限定义是:对于任意 e>0, 存在s,使得当|x-0| <s成立时,|f(x)-f(0)| <e成立,其中f(0)是f(x)在x=0处的极限
既然极限存在,我们取e=1,则必然存在s,使得在0的邻域(-s,s)内,|f(x)-f(0)|<1
所以 f(0)-1 < f(x) < f(0)+1
|f(x)| < max(|f(0)-1|,|f(0) +1|) 显然有界
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询