
线性代数与几何
9.计算行列式:1.xy...000x...00''''00...xyy0...0x(n阶)2.a1-b1a1-b2...a1-bna2-b1a2-b2...a2-bna...
9. 计算行列式 :
1.x y ... 0 0
0 x ... 0 0
' ' ' '
0 0 ... x y
y 0 ... 0 x (n阶)
2. a1-b1 a1-b2 ... a1-bn
a2-b1 a2-b2 ... a2-bn
a3-b1 a3-b2 ... a3-bn
' ' '
an-b1 an-b2 ... an-bn 展开
1.x y ... 0 0
0 x ... 0 0
' ' ' '
0 0 ... x y
y 0 ... 0 x (n阶)
2. a1-b1 a1-b2 ... a1-bn
a2-b1 a2-b2 ... a2-bn
a3-b1 a3-b2 ... a3-bn
' ' '
an-b1 an-b2 ... an-bn 展开
展开全部
1. 解法1: 用定义
根据行列式的定义, 每行每列恰取一元作乘积
行列式只有两项非零
D = (-1)^t(123...n)x^n + (-1)^t(234...n1)y^n
= x^n +(-1)^(n-1)y^n.
--逆序数 t(234...n1)=n-1
解法2: 用展开定理
按第1列展开, 行列式 =
x*(-1)^(1+1)*
x y ... 0 0
... ...
0 0 ... x y
0 0 ... 0 x
+
y(-1)^(n+1)*
y 0 ... 0 0
x y ... 0 0
... ...
0 0 ... x y
= x^n +(-1)^(n+1)y^n.
=================================================
2. a1-b1 a1-b2 ... a1-bn
a2-b1 a2-b2 ... a2-bn
a3-b1 a3-b2 ... a3-bn
... ...
an-b1 an-b2 ... an-bn
解:
D1 = a1-b1
D2 = (a1-b1)(a2-b2)-(a1-b2)(a2-b1)
= (a1-a2)(b1-b2)
当n>=3时
Dn =
a1-b1 a1-b2 a1-b3 ... a1-bn
a2-b1 a2-b2 a2-b3 ... a2-bn
a3-b1 a3-b2 a3-b3 ... a3-bn
... ... ...
an-b1 an-b2 an-b3 ... an-bn
c3-c1, c2-c1
a1-b1 b1-b2 b1-b3 ... a1-bn
a2-b1 b1-b2 b1-b3 ... a2-bn
a3-b1 b1-b2 b1-b3 ... a3-bn
... ... ...
an-b1 b1-b2 b1-b3 ... an-bn
第2,3列成比例
所以n>=3时, Dn = 0.
根据行列式的定义, 每行每列恰取一元作乘积
行列式只有两项非零
D = (-1)^t(123...n)x^n + (-1)^t(234...n1)y^n
= x^n +(-1)^(n-1)y^n.
--逆序数 t(234...n1)=n-1
解法2: 用展开定理
按第1列展开, 行列式 =
x*(-1)^(1+1)*
x y ... 0 0
... ...
0 0 ... x y
0 0 ... 0 x
+
y(-1)^(n+1)*
y 0 ... 0 0
x y ... 0 0
... ...
0 0 ... x y
= x^n +(-1)^(n+1)y^n.
=================================================
2. a1-b1 a1-b2 ... a1-bn
a2-b1 a2-b2 ... a2-bn
a3-b1 a3-b2 ... a3-bn
... ...
an-b1 an-b2 ... an-bn
解:
D1 = a1-b1
D2 = (a1-b1)(a2-b2)-(a1-b2)(a2-b1)
= (a1-a2)(b1-b2)
当n>=3时
Dn =
a1-b1 a1-b2 a1-b3 ... a1-bn
a2-b1 a2-b2 a2-b3 ... a2-bn
a3-b1 a3-b2 a3-b3 ... a3-bn
... ... ...
an-b1 an-b2 an-b3 ... an-bn
c3-c1, c2-c1
a1-b1 b1-b2 b1-b3 ... a1-bn
a2-b1 b1-b2 b1-b3 ... a2-bn
a3-b1 b1-b2 b1-b3 ... a3-bn
... ... ...
an-b1 b1-b2 b1-b3 ... an-bn
第2,3列成比例
所以n>=3时, Dn = 0.

2024-11-19 广告
第四轴分度盘是数控机床的重要组成部分,它能大幅提高加工效率和精度。作为苏州谭祖自动化科技有限公司的工作人员,我们深知第四轴分度盘的重要性,因此在产品的生产和设计上投入了大量精力。我们的第四轴分度盘具有高精度、高性能、承载能力强等特点,能满足...
点击进入详情页
本回答由苏州谭祖自动化科技有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询