
一道有趣的数学题: 1×2×3×4+1=5 2×3×4×5+
一道有趣的数学题:1×2×3×4+1=52×3×4×5+1=113×4×5×6+1=19;.........根据以上结果猜想研究:(n+1)(n+2)(n+3)(n+4)...
一道有趣的数学题: 1×2×3×4+1=5 2×3×4×5+1=11 3×4×5×6+1=19;......... 根据以上结果猜想研究:(n+1)(n+2)(n+3)(n+4)+1=? 我看好你哟!
展开
7个回答
展开全部
结论就是,四个连续自然数相乘再加上1等于首尾两个自然数相乘再加上1的和的平方,或者等于中间两个数相乘再减去1的差的平方。
证明:设四个连续的自然数为n,n+1,n+2,n+3,
那么n*(n+1)*(n+2)*(n+3)+1=n^4+6n^3+11n^2+6n+1
首尾两数相乘再加上1的和的平方为:{[n*(n+3)]+1}^2=n^4+6n^3+11n^2+6n+1
中间两个数相乘再减去1的差的平方平方为:{[(n+1)*(n+3)]-1}^2=n^4+6n^3+11n^2+6n+1
证明:设四个连续的自然数为n,n+1,n+2,n+3,
那么n*(n+1)*(n+2)*(n+3)+1=n^4+6n^3+11n^2+6n+1
首尾两数相乘再加上1的和的平方为:{[n*(n+3)]+1}^2=n^4+6n^3+11n^2+6n+1
中间两个数相乘再减去1的差的平方平方为:{[(n+1)*(n+3)]-1}^2=n^4+6n^3+11n^2+6n+1
展开全部
证明:设四个连续的自然数为n,n+1,n+2,n+3,
那么n*(n+1)*(n+2)*(n+3)+1=n^4+6n^3+11n^2+6n+1
首尾两数相乘再加上1的和的平方为:{[n*(n+3)]+1}^2=n^4+6n^3+11n^2+6n+1
中间两个数相乘再减去1的差的平方平方为:{[(n+1)*(n+3)]-1}^2=n^4+6n^3+11n^2+6n+1
那么n*(n+1)*(n+2)*(n+3)+1=n^4+6n^3+11n^2+6n+1
首尾两数相乘再加上1的和的平方为:{[n*(n+3)]+1}^2=n^4+6n^3+11n^2+6n+1
中间两个数相乘再减去1的差的平方平方为:{[(n+1)*(n+3)]-1}^2=n^4+6n^3+11n^2+6n+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据给出的式子发现:任意四个连续正整数的积与1的和一定是一个完全平方数,即四个连续的正整数为n、(n+1)、(n+2)、(n+3),n(n+1)(n+2)(n+3)+1=(n2+3n+1)2
(n+1)(n+2)(n+3)(n+4)+1=(n²+5n+5)²
(n+1)(n+2)(n+3)(n+4)+1=(n²+5n+5)²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
6n+5的平方
更多追问追答
追答
失误了
再来
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询