大一高数微积分
证明:若F(X)在【A,B】上连续,A<X1<X2<X3<B,则在(X1,X3)内至少存在一点Y,使得F(Y)=[F(X1)+F(X2)+F(X3)]/3...
证明:若F(X)在【A,B】上连续,A<X1<X2<X3<B,则在(X1,X3)内至少存在一点Y,使得F(Y)=[F(X1)+F(X2)+F(X3)]/3
展开
展开全部
证明,假定不存在这样的点,根据 过零点定理,在(x1,x3)上f(x)-[F(X1)+F(X2)+F(X3)]/3符号不变,即它要么永远大于[F(X1)+F(X2)+F(X3)]/3,要么永远小于 [F(X1)+F(X2)+F(X3)]/3
不失一般性,假定它永远大于,就是 f(x)>[F(X1)+F(X2)+F(X3)]/3对所有的x成立
而这显然不可能,因为F(x1),F(x2),F(x3)中最小的一个值肯定小于等于[F(X1)+F(X2)+F(X3)]/3,
不失一般性,假定它永远大于,就是 f(x)>[F(X1)+F(X2)+F(X3)]/3对所有的x成立
而这显然不可能,因为F(x1),F(x2),F(x3)中最小的一个值肯定小于等于[F(X1)+F(X2)+F(X3)]/3,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询