有一杠杆,支点在它的一端。在距支点0.1m处挂一质量为49kg的物体,加力于杠杆的另一端使杠杆保持
有一杠杆,支点在它的一端。在距支点0.1m处挂一质量为49kg的物体,加力于杠杆的另一端使杠杆保持水平,如果杠杆的线密度为5kg/m,求最省力的杠杆长?...
有一杠杆,支点在它的一端。在距支点0.1m处挂一质量为49kg的物体,加力于杠杆的另一端使杠杆保持水平,如果杠杆的线密度为5kg/m,求最省力的杠杆长?
展开
2014-11-23
展开全部
解:以顺时针方向为正方向.
设杠杆长L.线密度为μ,则杠杆重G1=μLg
力臂为l1=L/2,力矩M1=G1·l1=μL²g/2
挂上质量m=49kg的物体,重G2=mg
力臂l2=0.1m,力矩M2=mgl2
作用于另一端的力为F,力臂为l3=L
所以力矩M3=-FL
杠杆平衡,则M1+M2+M3=0
所以μL²g/2+mgl2=FL
得到F=μLg/2+mgl2/L
当F取最小值时,取函数的导数;
μg/2-mgl2/L²=0时
代入数据解得L=1.4m
此时得最省力的F=68.6N
综上,最省力的杠杆长为1.4m
设杠杆长L.线密度为μ,则杠杆重G1=μLg
力臂为l1=L/2,力矩M1=G1·l1=μL²g/2
挂上质量m=49kg的物体,重G2=mg
力臂l2=0.1m,力矩M2=mgl2
作用于另一端的力为F,力臂为l3=L
所以力矩M3=-FL
杠杆平衡,则M1+M2+M3=0
所以μL²g/2+mgl2=FL
得到F=μLg/2+mgl2/L
当F取最小值时,取函数的导数;
μg/2-mgl2/L²=0时
代入数据解得L=1.4m
此时得最省力的F=68.6N
综上,最省力的杠杆长为1.4m
更多追问追答
追问
看不懂,大一
追答
我也看不懂啊
这是百度的
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
杠杆为l,质量为M物体为m则M=5l
1/2Mg+0.1mg=Fl
1/2Mg+0.1mg=Fl
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-11-23
展开全部
别删,好题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询