展开全部
配方法解一元二次方程的步骤具体过程如下:
1.将此一元二次方程化为ax^2+bx+c=0的形式(此一元二次方程满足有实根)
2.将二次项系数化为1
3.将常数项移到等号右侧
4.等号左右两边同时加上一次项系数一半的平方
5.将等号左边的代数式写成完全平方形式
6.左右同时开平方
7.整理即可得到原方程的根
例:解方程2x^2+4=6x
1.2x^2-6x+4=0
2.x^2-3x+2=0
3.x^2-3x=-2
4.x^2-3x+2.25=0.25
5.(x-1.5)^2=0.25
6.x-1.5=±0.5
7.x1=2
x2=1
1.将此一元二次方程化为ax^2+bx+c=0的形式(此一元二次方程满足有实根)
2.将二次项系数化为1
3.将常数项移到等号右侧
4.等号左右两边同时加上一次项系数一半的平方
5.将等号左边的代数式写成完全平方形式
6.左右同时开平方
7.整理即可得到原方程的根
例:解方程2x^2+4=6x
1.2x^2-6x+4=0
2.x^2-3x+2=0
3.x^2-3x=-2
4.x^2-3x+2.25=0.25
5.(x-1.5)^2=0.25
6.x-1.5=±0.5
7.x1=2
x2=1
展开全部
1.转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式 2.移项:常数项移到等式右边
3.系数化1:二次项系数化为1 4.配方:等号左右两边同时加上一次项系数一半的平方 5.用直接开平方法求解 整理
(即可得到原方程的根) 代数式表示方法:注(^2是平方的意思.)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
例:解方程2x^2+4=6x 1.2x^2-6x+4=0 2.x^2-3x+2=0 3.x^2-3x=-2
4.x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5.(x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0) 6.x-1.5=±0.5 7.x1=2
x2=1 (一元二次方程通常有两个解,X1 X2)
3.系数化1:二次项系数化为1 4.配方:等号左右两边同时加上一次项系数一半的平方 5.用直接开平方法求解 整理
(即可得到原方程的根) 代数式表示方法:注(^2是平方的意思.)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
例:解方程2x^2+4=6x 1.2x^2-6x+4=0 2.x^2-3x+2=0 3.x^2-3x=-2
4.x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5.(x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0) 6.x-1.5=±0.5 7.x1=2
x2=1 (一元二次方程通常有两个解,X1 X2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
数学
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |