如何根据前序遍历序列和中序遍历序列确定二叉树
前序先访问根节点,遍历左序然后右序。中序先遍历左序然后访问根节点,遍历右序。
假设某二叉树的先序遍历序列是abdgcefh,中序遍历序列是dgbaechf,画出二叉树,并给出其后序遍历序列。
已知一棵二叉树的先序遍历序列和中序遍历序列分别是abdgcefh、dgbaechf,求二叉树及后序遍历序列。
分析:先序遍历序列的第一个字符为根结点。对于中序遍历,根结点在中序遍历序列的中间,左边部分是根结点的左子树的中序遍历序列,右边部分是根结点的右子树的中序遍历序列。
先序:abdgcefh --> a bdg cefh
中序:dgbaechf --> dgb a echf
得出结论:a是树根,a有左子树和右子树,左子树有bdg结点,右子树有cefh结点。
先序:bdg --> b dg
中序:dgb --> dg b
得出结论:b是左子树的根结点,b无右子树,有左子树。
先序:dg --> d g
中序:dg --> d g
得出结论:d是b的左子树的根结点,d无左子树,有右子树。
先序:cefh --> c e fh
中序:echf --> e c hf
得出结论:c是右子树的根结点,c有左子树(只有e结点),有右子树(有fh结点)。
先序:fh --> f h
中序:hf --> h f
得出结论:f是c的右子树的根结点,f有左子树(只有h结点),无右子树。
扩展资料:
根据访问结点操作发生位置命名:
① NLR:前序遍历(Preorder Traversal 亦称(先序遍历))
——访问根结点的操作发生在遍历其左右子树之前。
② LNR:中序遍历(Inorder Traversal)
——访问根结点的操作发生在遍历其左右子树之中(间)。
③ LRN:后序遍历(Postorder Traversal)
——访问根结点的操作发生在遍历其左右子树之后。
参考资料来源:百度百科-二叉树遍历
分析过程:
以下面的例题为例进行讲解:
已知一棵二叉树的先序遍历序列和中序遍历序列分别是abdgcefh、dgbaechf,求二叉树及后序遍历序列。
分析:先序遍历序列的第一个字符为根结点。对于中序遍历,根结点在中序遍历序列的中间,左边部分是根结点的左子树的中序遍历序列,右边部分是根结点的右子树的中序遍历序列。
先序:abdgcefh --> a bdg cefh
中序:dgbaechf --> dgb a echf
得出结论:a是树根,a有左子树和右子树,左子树有bdg结点,右子树有cefh结点。
先序:bdg --> b dg
中序:dgb --> dg b
得出结论:b是左子树的根结点,b无右子树,有左子树。
先序:dg --> d g
中序:dg --> d g
得出结论:d是b的左子树的根结点,d无左子树,有右子树。
先序:cefh --> c e fh
中序:echf --> e c hf
得出结论:c是右子树的根结点,c有左子树(只有e结点),有右子树(有fh结点)。
先序:fh --> f h
中序:hf --> h f
得出结论:f是c的右子树的根结点,f有左子树(只有h结点),无右子树。
还原二叉树为:
a
b c
d e f
g h
后序遍历序列:gdbehfca