已知数列{an}中,a1=3,an-an-1=(2-n)?2n-1(n≥2,n∈N*).(1)设cn=an-2n,求cn;(2)记n×(n-1
已知数列{an}中,a1=3,an-an-1=(2-n)?2n-1(n≥2,n∈N*).(1)设cn=an-2n,求cn;(2)记n×(n-1)×…×2×1=n!,求数列...
已知数列{an}中,a1=3,an-an-1=(2-n)?2n-1(n≥2,n∈N*).(1)设cn=an-2n,求cn;(2)记n×(n-1)×…×2×1=n!,求数列{nan}的前n项和Sn.
展开
1个回答
展开全部
(Ⅰ)∵a1=3,an-an-1=(2-n)?2n-1(n≥2,n∈N*).
∴a2-a1=0?21,a3-a2=-1?22,a4-a3=-2?23,…an-an-1=(2-n)?2n-1(n≥2,n∈N*).
两边同时相加得an-a1=0?21-1?22-2?23,…-(2-n)?2n-1.
设bn=0?21-1?22-2?23,…-(2-n)?2n-1.
则2bn=0?22-1?23-2?24,…-(2-n)?2n.
两式相减得bn=0?21+22+23+…+2n-1-(2-n)?2n=1+
-(2-n)?2n=1+2n-4-(2-n)?2n=(n-1)?2n-3,
∴an-a1=(n-1)?2n-3,
即an=(n-1)?2n,
∵cn=an-2n,
∴cn=an-2n=(n-1)?2n-2n=(n-2)?2n,
(Ⅱ)an-2n=nan-1-n2n-1=n(an-1-2n-1),令cn=an-2n,则cn=ncn-1.
而c1=1,
∴cn=n(n-1)?…?2?1?c1=n(n-1)?…?2?1.
∴an=n(n-1)?…?2?1+2n.
nan=n?n?(n-1)?…?2?1+n2n=(n+1)!-n!+n?2n,
∴Sn=(2!-1!)+(3!-2!)+…+(n+1)!-n!+(1×2+2×22+…+n×2n).
令Tn=1×2+2×22+…+n×2n,①
则2Tn=1×22+2×23+…+(n-1)×2n+n×2n+1.②
①-②,得-Tn=2+22+…+2n-n×2n+1,Tn=(n-1)2n+1+2.
∴Sn=(n+1)!+(n-1)2n+1+1.
∴a2-a1=0?21,a3-a2=-1?22,a4-a3=-2?23,…an-an-1=(2-n)?2n-1(n≥2,n∈N*).
两边同时相加得an-a1=0?21-1?22-2?23,…-(2-n)?2n-1.
设bn=0?21-1?22-2?23,…-(2-n)?2n-1.
则2bn=0?22-1?23-2?24,…-(2-n)?2n.
两式相减得bn=0?21+22+23+…+2n-1-(2-n)?2n=1+
4(1?2n?2) |
1?2 |
∴an-a1=(n-1)?2n-3,
即an=(n-1)?2n,
∵cn=an-2n,
∴cn=an-2n=(n-1)?2n-2n=(n-2)?2n,
(Ⅱ)an-2n=nan-1-n2n-1=n(an-1-2n-1),令cn=an-2n,则cn=ncn-1.
而c1=1,
∴cn=n(n-1)?…?2?1?c1=n(n-1)?…?2?1.
∴an=n(n-1)?…?2?1+2n.
nan=n?n?(n-1)?…?2?1+n2n=(n+1)!-n!+n?2n,
∴Sn=(2!-1!)+(3!-2!)+…+(n+1)!-n!+(1×2+2×22+…+n×2n).
令Tn=1×2+2×22+…+n×2n,①
则2Tn=1×22+2×23+…+(n-1)×2n+n×2n+1.②
①-②,得-Tn=2+22+…+2n-n×2n+1,Tn=(n-1)2n+1+2.
∴Sn=(n+1)!+(n-1)2n+1+1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询