在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F
在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,此时PD...
在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,此时PD=0,易证PD,PE,PF与AB满足的数量关系是PD+PE+PF=AB;当点P在△ABC内时,先在图2中作出相应的图形,并写出PD,PE,PF与AB满足的数量关系,然后证明你的结论;(2)如图3,当点P在△ABC外时,先在图3中作出相应的图形,然后写出PD,PE,PF与AB满足的数量关系.(不用说明理由)
展开
1个回答
展开全部
(1)结论是PD+PE+PF=AB,
证明:过点P作MN∥BC分别交AB、AC于M、N两点,:
∵PE∥AC,PF∥AB,
∴四边形PEAF是平行四边形,
∴PF=AE,
∵AB=AC,
∴∠B=∠C,
∵MN∥BC,
∴∠ANM=∠C=∠B=∠AMN,
∵PE∥AC,
∴∠EPM=∠FNP,
∴∠AMN=∠FPN,
∴∠EPM=∠EMP,
∴PE=ME,
∵AE+ME=AM,
∴PE+PF=AM,
∵MN∥CB,DF∥AB,
∴四边形BDPM是平行四边形,
∴MB=PD,
∴PD+PE+PF=AM+MB=AB.
(2)如图3,利用(1)中证明方法,即可得出:结论PE+PF-PD=AB.
证明:过点P作MN∥BC分别交AB、AC延长线于M、N两点,:
∵PE∥AC,PF∥AB,
∴四边形PEAF是平行四边形,
∴PF=AE,
∵AB=AC,
∴∠B=∠C,
∵MN∥BC,
∴∠ANM=∠C=∠B=∠AMN,
∵PE∥AC,
∴∠EPM=∠FNP,
∴∠AMN=∠FPN,
∴∠EPM=∠EMP,
∴PE=ME,
∵AE+ME=AM,
∴PE+PF=AM,
∵MN∥CB,DF∥AB,
∴四边形BDPM是平行四边形,
∴MB=PD,
∴PE+PF-PD=AM-MB=AB.
证明:过点P作MN∥BC分别交AB、AC于M、N两点,:
∵PE∥AC,PF∥AB,
∴四边形PEAF是平行四边形,
∴PF=AE,
∵AB=AC,
∴∠B=∠C,
∵MN∥BC,
∴∠ANM=∠C=∠B=∠AMN,
∵PE∥AC,
∴∠EPM=∠FNP,
∴∠AMN=∠FPN,
∴∠EPM=∠EMP,
∴PE=ME,
∵AE+ME=AM,
∴PE+PF=AM,
∵MN∥CB,DF∥AB,
∴四边形BDPM是平行四边形,
∴MB=PD,
∴PD+PE+PF=AM+MB=AB.
(2)如图3,利用(1)中证明方法,即可得出:结论PE+PF-PD=AB.
证明:过点P作MN∥BC分别交AB、AC延长线于M、N两点,:
∵PE∥AC,PF∥AB,
∴四边形PEAF是平行四边形,
∴PF=AE,
∵AB=AC,
∴∠B=∠C,
∵MN∥BC,
∴∠ANM=∠C=∠B=∠AMN,
∵PE∥AC,
∴∠EPM=∠FNP,
∴∠AMN=∠FPN,
∴∠EPM=∠EMP,
∴PE=ME,
∵AE+ME=AM,
∴PE+PF=AM,
∵MN∥CB,DF∥AB,
∴四边形BDPM是平行四边形,
∴MB=PD,
∴PE+PF-PD=AM-MB=AB.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询