设函数y=f(x)是定义在R + 上的减函数,并且满足f(xy)=f(x)+f(y), f( 1 3 )=1 .(1)
设函数y=f(x)是定义在R+上的减函数,并且满足f(xy)=f(x)+f(y),f(13)=1.(1)求f(1)的值;(2)如果f(x)+f(2-x)<2,求x的取值范...
设函数y=f(x)是定义在R + 上的减函数,并且满足f(xy)=f(x)+f(y), f( 1 3 )=1 .(1)求f(1)的值;(2)如果f(x)+f(2-x)<2,求x的取值范围.
展开
2个回答
展开全部
(1)令x=y=1,则f(1)=f(1)+f(1), ∴f(1)=0(4分) (2)∵ f(
∴ f(
∴ f(x)+f(2-x)=f[x(2-x)]<f(
又由y=f(x)是定义在R + 上的减函数,得:
解之得: x∈(1-
|
展开全部
因为f(xy)=f(x)+f(y),f(1/3)=1
所以f(1/3)=f(1*1/3)=f(1)+f(1/3)
所以f(1)=0
因为f(xy)=f(x)+f(y),f(1/3)=1
所以f(1/9)=f(1/3*1/3)=f(1/3)+f(1/3)=2
因为f(x)+f(2-x)<2
所以f(x(2-x))<2
即f(2x-x^2)<2=f(1/9)
因为函数y=f(x)是定义在r+上的减函数
所以2x-x^2>1/9
即9x^2-18x+1>0
所以x>(3+2√2)/3或x<(3-2√2)/3
注意y=f(x)是定义在r+上的减函数,f(x)+f(2-x)<2,所以x必须还满足x>0,x<2
综上知x的取值范围:0<x<(3-2√2)/3,或者(3+2√2)/3<x<2
所以f(1/3)=f(1*1/3)=f(1)+f(1/3)
所以f(1)=0
因为f(xy)=f(x)+f(y),f(1/3)=1
所以f(1/9)=f(1/3*1/3)=f(1/3)+f(1/3)=2
因为f(x)+f(2-x)<2
所以f(x(2-x))<2
即f(2x-x^2)<2=f(1/9)
因为函数y=f(x)是定义在r+上的减函数
所以2x-x^2>1/9
即9x^2-18x+1>0
所以x>(3+2√2)/3或x<(3-2√2)/3
注意y=f(x)是定义在r+上的减函数,f(x)+f(2-x)<2,所以x必须还满足x>0,x<2
综上知x的取值范围:0<x<(3-2√2)/3,或者(3+2√2)/3<x<2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询