在等比数列{a n }中,a n >0(n∈N * ),公比q∈(0,1),且a 1 a 5 +2a 3 a 5 +a 2 a 8 =25,又a 3
在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3与a5的等比中项为2.(1)求数列{an}的通项公式;(2)...
在等比数列{a n }中,a n >0(n∈N * ),公比q∈(0,1),且a 1 a 5 +2a 3 a 5 +a 2 a 8 =25,又a 3 与a 5 的等比中项为2.(1)求数列{a n }的通项公式;(2)设b n =log 2 a n ,数列{b n }的前n项和为S n ,求数列{S n }的通项公式;(3)是否存在k∈N * ,使得 S 1 1 + S 2 2 +…+ S n n <k对任意n∈N * 恒成立,若存在,求出k的最小值,若不存在,请说明理由.
展开
展开全部
(1)∵a 1 a 5 +2a 3 a 5 +a 2 a 8 =25, ∴a 3 2 +2a 3 a 5 +a 5 2 =25, ∴(a 3 +a 5 ) 2 =25, 又a n >0,∴a 3 +a 5 =5, 又a 3 与a 5 的等比中项为2, ∴a 3 a 5 =4. 而q∈(0,1), ∴a 3 >a 5 ,∴a 3 =4,a 5 =1, ∴q=
(2)∵b n =log 2 a n =5-n,∴b n+1 -b n =-1, b 1 =log 2 a 1 =log 2 16=log 2 2 4 =4, ∴{b n }是以b 1 =4为首项,-1为公差的等差数列, ∴S n =
(3)由(2)知S n =
当n≤8时,
当n>9时,
∴当n=8或9时,
故存在k∈N * ,使得
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询