已知:O为直线AB上的一点,OC⊥OE于点O,射线OF平分∠AOE.(1)如图1,判断∠COF和∠BOE之间的数量关系

已知:O为直线AB上的一点,OC⊥OE于点O,射线OF平分∠AOE.(1)如图1,判断∠COF和∠BOE之间的数量关系?并说明理由;(2)若将∠COE绕点O旋转至图2的位... 已知:O为直线AB上的一点,OC⊥OE于点O,射线OF平分∠AOE.(1)如图1,判断∠COF和∠BOE之间的数量关系?并说明理由;(2)若将∠COE绕点O旋转至图2的位置,试问(1)中∠COF和∠BOE之间的数量关系是否发生变化?若不发生变化,请你加以证明,若发生变化,请你说明理由;(3)若将∠COE绕点O旋转至图3的位置,继续探究∠COF和∠BOE之间的数量关系,并加以证明. 展开
 我来答
錒逺公子q59
2014-12-29 · TA获得超过254个赞
知道答主
回答量:104
采纳率:100%
帮助的人:88.2万
展开全部
解答:解:(1)∵OC⊥OE,
∴∠COE=90°,
∴∠BOE=90°-∠AOC,∠COF=
90°+∠AOC
2
-∠AOC=
90°?∠AOC
2

∴∠BOE=2∠COF.

(2)不发生变化.证明如下:
∵射线OF平分∠AOE,
∴∠EOF=2∠AOE,
∵∠COE=90°,
∴∠COF=90°-∠EOF,∠BOE=180°-2∠EOF.
∴∠BOE=2∠COF.

(3)∠BOE+2∠COF=360°.
理由:∵∠COE=90°,
∴∠COF=90°+∠EOF,∠BOE=90°+∠BOC=90°+90°-2∠EOF=180°-2∠EOF.
∴∠BOE+2∠COF=360°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式