两道高数求极限的题,同济第六版,用图上提示的方法做,快考试了帮忙解答一下呗~谢啦
1个回答
展开全部
解:lim(x->∞)[x^2(1-xsin(1/x))]
=lim(x->∞)[x^3(1/x-sin(1/x))]
=lim(x->∞)[(1/x-sin(1/x))/(1/x)^3]
=lim(t->0)[(t-sint)/t^3] (令t=1/x)
=lim(t->0)[(1-cost)/(3t^2)] (0/0型极限,应用罗比达法则)
=lim(t->0)[sint/(6t)] (0/0型极限,应用罗比达法则)
=(1/6)lim(t->0)(sint/t)
=(1/6)*1 (应用重要极限)
=1/6;
lim(x->0)[(tanx-sinx)/(ln(1+x^2)*sinx)]
=lim(x->0)[tanx(1-cosx)/(ln(1+x^2)*sinx)]
=lim(x->0)[secx(1-cosx)/ln(1+x^2)] (分子分母同除sinx)
={lim(x->0)(secx)}*{lim(x->0)[(1-cosx)/ln(1+x^2)]}
=1*{lim(x->0)[(1-cosx)/ln(1+x^2)]}
=lim(x->0)[(1-cosx)/ln(1+x^2)]
=lim(x->0)[sinx/(2x(1+x^2))] (0/0型极限,应用罗比达法则)
=(1/2)lim(x->0)[(sinx/x)/(1+x^2)]
=(1/2)[lim(x->0)(sinx/x)]/[lim(x->0)(1+x^2)]
=(1/2)*1/(1+0^2) (应用重要极限)
=1/2。
=lim(x->∞)[x^3(1/x-sin(1/x))]
=lim(x->∞)[(1/x-sin(1/x))/(1/x)^3]
=lim(t->0)[(t-sint)/t^3] (令t=1/x)
=lim(t->0)[(1-cost)/(3t^2)] (0/0型极限,应用罗比达法则)
=lim(t->0)[sint/(6t)] (0/0型极限,应用罗比达法则)
=(1/6)lim(t->0)(sint/t)
=(1/6)*1 (应用重要极限)
=1/6;
lim(x->0)[(tanx-sinx)/(ln(1+x^2)*sinx)]
=lim(x->0)[tanx(1-cosx)/(ln(1+x^2)*sinx)]
=lim(x->0)[secx(1-cosx)/ln(1+x^2)] (分子分母同除sinx)
={lim(x->0)(secx)}*{lim(x->0)[(1-cosx)/ln(1+x^2)]}
=1*{lim(x->0)[(1-cosx)/ln(1+x^2)]}
=lim(x->0)[(1-cosx)/ln(1+x^2)]
=lim(x->0)[sinx/(2x(1+x^2))] (0/0型极限,应用罗比达法则)
=(1/2)lim(x->0)[(sinx/x)/(1+x^2)]
=(1/2)[lim(x->0)(sinx/x)]/[lim(x->0)(1+x^2)]
=(1/2)*1/(1+0^2) (应用重要极限)
=1/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询