已知b>a>0,证明2a/(a*a+b*b)<(lna-lnb)/(b-a)

凌月霜丶
2014-12-09 · 知道合伙人教育行家
凌月霜丶
知道合伙人教育行家
采纳数:69934 获赞数:252974
毕业于郧阳师专师范大学

向TA提问 私信TA
展开全部
设f(x)=ln x,则f(x)在[a,b]上连续,在(a,b)上可导,
则至少存在一点c∈(a,b)使得f'(c)=[f(b)-f(a)]/(b-a)
f'(x)=(ln x)'=1/x,左边=(2a)/(a^2+b^2)<2a/2ab=1/b=f'(b)
右边=1/(ab)^0.5>1/(a*a)^0.5=1/a=f'(a),中间部分=f'(c)
则要比较f'(a),f'(b),f'(c)三者的大小。
又有f"(x)=-1/x^2,当x>0时,f"(x)<0,所以f'(x)单调递减
因为a<c<b,所以可得f'(b)<f'(c)<f'(a),从而原式成立。
追问
那个,右边=后面放缩错了吧?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式