【高数】不定积分第一题
1个回答
展开全部
x∈[0,1]
设u=arcsinx, u∈[0,π/2]
则x=sinu, dx=cosudu
xarcsinxdx=usinucosudu=(1/2)usin2udu=-(1/4)ud(cos2u)
∫xarcsinxdx=-(1/4)∫ud(cos2u)
=-(1/4)ucos2u+(1/4)∫cos2udu
=-(1/4)ucos2u+(1/8)sin2u(因为是定积分,所以不加常数了)
原式=-(1/4)ucos2u+(1/8)sin2u|<0,π/2>
=(-1/4)(π/2)cosπ+(1/8)sinπ+0-0
=π/8
设u=arcsinx, u∈[0,π/2]
则x=sinu, dx=cosudu
xarcsinxdx=usinucosudu=(1/2)usin2udu=-(1/4)ud(cos2u)
∫xarcsinxdx=-(1/4)∫ud(cos2u)
=-(1/4)ucos2u+(1/4)∫cos2udu
=-(1/4)ucos2u+(1/8)sin2u(因为是定积分,所以不加常数了)
原式=-(1/4)ucos2u+(1/8)sin2u|<0,π/2>
=(-1/4)(π/2)cosπ+(1/8)sinπ+0-0
=π/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询