如图,在三棱柱ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1⊥平面ABC,D,E,I分别是CC1,AB,AA1的

如图,在三棱柱ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1⊥平面ABC,D,E,I分别是CC1,AB,AA1的中点.(1)求证:面CEI∥平面A1BD;... 如图,在三棱柱ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1⊥平面ABC,D,E,I分别是CC1,AB,AA1的中点.(1)求证:面CEI∥平面A1BD;(2)若H为A1B上的动点,CH与平面A1AB所成的最大角的正切值为152,求侧棱AA1的长. 展开
 我来答
黎约煽情TA74
推荐于2016-05-16 · TA获得超过323个赞
知道答主
回答量:106
采纳率:0%
帮助的人:109万
展开全部
解:(1)∵E,I分别是AB,AA1的中点,
∴EI∥BA1
∵EI?平面A1BD,BA1?平面A1BD,
∴EI∥平面A1BD,
取BA1的中点G,连接EG,DG,
∴GE平行且等于
1
2
AA1
∵D是CC1中点,
∴CD平行且等于
1
2
AA1
∴GE平行且等于CD,
∴四边形GDCE是平行四边形,
∴CE∥GD,
∵CE?平面A1BD,GD?平面A1BD,
∴CE∥平面A1BD,
∵CE∩EI=E,
∴平面A1BD∥面CEI;
(2)∵AA1⊥面ABC,CE?面ABC,
∴AA1⊥CE
又△ABC等边三角形,E是中点,
CE⊥AB,CE=
3
2
AB=
3

所以CE⊥面AA1B,
连接EH,则∠EHC为CH与平面AA1B所成的角,
在Rt△CEH中,tan∠EHC=
CE
EH
3
EH

所以EH最短时∠EHC最大
此时,EH⊥A1B,
tan∠EHC=
CE
EH
3
EH
15
2
,∴EH=
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消
5