设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x
设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是()A.若fx...
设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( )A.若fx′(x0,y0)=0,则fy′(x0,y0)=0B.若fx′(x0,y0)=0,则fy′(x0,y0)≠0C.若fx′(x0,y0)≠0,则fy′(x0,y0)=0D.若fx′(x0,y0)≠0,则fy′(x0,y0)≠0
展开
展开全部
根据题意,可以构建拉格朗日函数:
F(x,y,λ)=f(x,y)+λφ(x,y)
M(x0,y0)是f(x,y)在约束条件下φ(x,y)=0下的一个极值点,
根据拉格朗日函数极值点的条件,在(x0,y0)处要满足:
即:
Fx′=fx′(x0,y0)+λφx′(x0,y0)=0;
Fy′=fy′(x0,y0)+λφy′(x0,y0)=0;
因为:φy′(x0,y0)≠0;于是根据Fy′=fy′(x0,y0)+λφy′(x0,y0)=0,可以解得:
λ=-
将λ=-
代入Fx′=fx′(x0,y0)+λφx′(x0,y0)=0,得:
fx′(x0,y0)-
φx′(x0,y0)=0
即:fx′(x0,y0)=
φx′(x0,y0)
当fx′(x0,y0)=0时,有φx′(x0,y0)=0或者fy′(x0,y0)=0;
当fx′(x0,y0)≠0时,有:φx′(x0,y0)fy′(x0,y0)≠0,则必有:φx′(x0,y0)≠0且fy′(x0,y0)≠0.
A选项为当fx′(x0,y0)=0时,fy′(x0,y0)可能等于0,而不是一定等于0,故A不对.
B选项为当fx′(x0,y0)=0时,fy′(x0,y0)可能不等于0,而不是一定不等于0,故B不对.
C选项为当fx′(x0,y0)≠0时,fy′(x0,y0)必不等于0,故C不对.
D选项为当fx′(x0,y0)≠0时,fy′(x0,y0)必不等于0,故D对.
故选:D.
F(x,y,λ)=f(x,y)+λφ(x,y)
M(x0,y0)是f(x,y)在约束条件下φ(x,y)=0下的一个极值点,
根据拉格朗日函数极值点的条件,在(x0,y0)处要满足:
|
即:
Fx′=fx′(x0,y0)+λφx′(x0,y0)=0;
Fy′=fy′(x0,y0)+λφy′(x0,y0)=0;
因为:φy′(x0,y0)≠0;于是根据Fy′=fy′(x0,y0)+λφy′(x0,y0)=0,可以解得:
λ=-
fy′(x0,y0) |
φy′(x0,y0) |
将λ=-
fy′(x0,y0) |
φy′(x0,y0) |
fx′(x0,y0)-
fy′(x0,y0) |
φy′(x0,y0) |
即:fx′(x0,y0)=
fy′(x0,y0) |
φy′(x0,y0) |
当fx′(x0,y0)=0时,有φx′(x0,y0)=0或者fy′(x0,y0)=0;
当fx′(x0,y0)≠0时,有:φx′(x0,y0)fy′(x0,y0)≠0,则必有:φx′(x0,y0)≠0且fy′(x0,y0)≠0.
A选项为当fx′(x0,y0)=0时,fy′(x0,y0)可能等于0,而不是一定等于0,故A不对.
B选项为当fx′(x0,y0)=0时,fy′(x0,y0)可能不等于0,而不是一定不等于0,故B不对.
C选项为当fx′(x0,y0)≠0时,fy′(x0,y0)必不等于0,故C不对.
D选项为当fx′(x0,y0)≠0时,fy′(x0,y0)必不等于0,故D对.
故选:D.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询