已知函数f(x)=log4(ax2+2x+3)(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的
已知函数f(x)=log4(ax2+2x+3)(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明...
已知函数f(x)=log4(ax2+2x+3)(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.
展开
1个回答
展开全部
(1)∵f(x)=log4(ax2+2x+3)且f(1)=1,
∴log4(a?12+2×1+3)=1?a+5=4?a=-1
可得函数f(x)=log4(-x2+2x+3)
∵真数为-x2+2x+3>0?-1<x<3
∴函数定义域为(-1,3)
令t=-x2+2x+3=-(x-1)2+4
可得:当x∈(-1,1)时,t为关于x的增函数;
当x∈(1,3)时,t为关于x的减函数.
∵底数为4>1
∴函数f(x)=log4(-x2+2x+3)的单调增区间为(-1,1),单调减区间为(1,3)
(2)设存在实数a,使f(x)的最小值为0,
由于底数为4>1,可得真数t=ax2+2x+3≥1恒成立,
且真数t的最小值恰好是1,
即a为正数,且当x=-
=-
时,t值为1.
∴
?
?a=
因此存在实数a=
,使f(x)的最小值为0.
∴log4(a?12+2×1+3)=1?a+5=4?a=-1
可得函数f(x)=log4(-x2+2x+3)
∵真数为-x2+2x+3>0?-1<x<3
∴函数定义域为(-1,3)
令t=-x2+2x+3=-(x-1)2+4
可得:当x∈(-1,1)时,t为关于x的增函数;
当x∈(1,3)时,t为关于x的减函数.
∵底数为4>1
∴函数f(x)=log4(-x2+2x+3)的单调增区间为(-1,1),单调减区间为(1,3)
(2)设存在实数a,使f(x)的最小值为0,
由于底数为4>1,可得真数t=ax2+2x+3≥1恒成立,
且真数t的最小值恰好是1,
即a为正数,且当x=-
2 |
2a |
1 |
a |
∴
|
|
1 |
2 |
因此存在实数a=
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询