如图:在四边形ABCD中,点E在边CD上,连接AE、BE并延长AE交BC的延长线于点F,给出下列5个关系式::①AD

如图:在四边形ABCD中,点E在边CD上,连接AE、BE并延长AE交BC的延长线于点F,给出下列5个关系式::①AD∥BC,②,DE=EC③∠1=∠2,④∠3=∠4,⑤A... 如图:在四边形ABCD中,点E在边CD上,连接AE、BE并延长AE交BC的延长线于点F,给出下列5个关系式::①AD∥BC,②,DE=EC③∠1=∠2,④∠3=∠4,⑤AD+BC=AB。将其中三个关系式作为已知,另外两个作为结论,构成正确的命题。请用序号写出两个正确的命题:(1) ;(2) ; 展开
 我来答 举报
巍峨又轻柔灬饼子6992
推荐于2016-03-26 · TA获得超过211个赞
知道答主
回答量:152
采纳率:66%
帮助的人:71.3万
展开全部
(1)如果①②③,那么④⑤;(2)如果①③④,那么②⑤.


试题分析:如果①②③,那么④⑤:先证得△AED≌△FEC,得到AD=CF,再利用∠1=∠2,而∠2=∠F,得到AB=BF,则有AD+BC=AB;
如果①③④,那么②⑤:先由AD∥BC,得到∠1=∠F,而∠1=∠2,得到∠2=∠F,于是BA=BF,而∠3=∠4,可得AE=EF,易证△AED≌△FEC,得到AD=CF,DE=EC,易得AD+BC=AB.
试题解析:如果①②③,那么④⑤.理由如下:
∵AD∥BC,
∴∠1=∠F,∠D=∠ECF,
而DE=EC,
∴△AED≌△FEC,
∴AD=CF,
∵∠1=∠2,
∴∠2=∠F,
∴AB=BF,
而BF=BC+CF,
∴AD+BC=AB;
如果①③④,那么②⑤.理由如下:
∵AD∥BC,
∴∠1=∠F,
而∠1=∠2,
∴∠2=∠F,
∴BA=BF,
∵∠3=∠4,
∴BE平分AF,
即AE=EF,
易证△AED≌△FEC,
∴AD=CF,DE=EC,
而BF=BC+CF,
∴AD+BC=AB.
故答案为如果①②③,那么④⑤;如果①③④,那么②⑤.
考点: 命题与定理.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式