如图所示,在平面直角坐标系中有点A(-1,0),点B(4,0),以AB为直径的半圆交y轴正半轴于点C.(1)求
如图所示,在平面直角坐标系中有点A(-1,0),点B(4,0),以AB为直径的半圆交y轴正半轴于点C.(1)求点C的坐标;(2)求过A,B,C三点的抛物线的解析式;(3)...
如图所示,在平面直角坐标系中有点A(-1,0),点B(4,0),以AB为直径的半圆交y轴正半轴于点C.(1)求点C的坐标;(2)求过A,B,C三点的抛物线的解析式;(3)在(2)的条件下,若在抛物线上有一点D,使四边形BOCD为直角梯形,求直线BD的解析式;(4)设点M是抛物线上任意一点,过点M作MN⊥y轴,交y轴于点N.若在线段AB上有且只有一点P,使∠MPN为直角,求点M的坐标.
展开
1个回答
展开全部
解:(1)C点的坐标为(0,2);理由如下:
如图,连接AC,CB.依相交弦定理的推论可得OC2=OA?OB,
解得OC=2.
故C点的坐标为(0,2).
(2)设抛物线解析式为y=a(x+1)(x-4).
把点C(0,2)的坐标代入上式得a=-
.
∴抛物线解析式是y=-
x2+
x+2.
(3)如图,过点C作CD∥OB,交抛物线于点D,则四边形BOCD为直角梯形.
由(2)知抛物线的对称轴是x=
,
∴点D的坐标为(3,2).
设过点B,点D的解析式是y=kx+b.
把点B(4,0),点D(3,2)的坐标代入上式得
解之得
∴直线BD的解析式是y=-2x+8.
(4)解:依题意可知,以MN为直径的半圆与线段AB相切于点P.
设点M的坐标为(m,n).
①当点M在第一或第三象限时,m=2n.
把点M的坐标(2n,n)代入抛物线的解析式得n2-n-1=0,
解之得n=
.
∴点M的坐标是(1+
,
如图,连接AC,CB.依相交弦定理的推论可得OC2=OA?OB,
解得OC=2.
故C点的坐标为(0,2).
(2)设抛物线解析式为y=a(x+1)(x-4).
把点C(0,2)的坐标代入上式得a=-
1 |
2 |
∴抛物线解析式是y=-
1 |
2 |
3 |
2 |
(3)如图,过点C作CD∥OB,交抛物线于点D,则四边形BOCD为直角梯形.
由(2)知抛物线的对称轴是x=
3 |
2 |
∴点D的坐标为(3,2).
设过点B,点D的解析式是y=kx+b.
把点B(4,0),点D(3,2)的坐标代入上式得
|
解之得
|
∴直线BD的解析式是y=-2x+8.
(4)解:依题意可知,以MN为直径的半圆与线段AB相切于点P.
设点M的坐标为(m,n).
①当点M在第一或第三象限时,m=2n.
把点M的坐标(2n,n)代入抛物线的解析式得n2-n-1=0,
解之得n=
1±
| ||
2 |
∴点M的坐标是(1+
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载