2011-10-10
展开全部
P点在BC上:
过P点作PG⊥CF 交CF于G 则FG=PD PG∥AB ∠GPC=∠B
∵∠B=∠ACB ∴∠GPC=∠ACB △PGC与△CEP同为直角三角形且共斜边PC
∴△PGC≌△CEP CG=PE
∴PD+PE=FG+CG=CF
P点在BC延长线上:
过C点作CG ⊥PD 交PD于G 则GD=CF CG∥AB ∠PCG=∠B
∵∠B=∠ACB ∠ACB=∠PCE ∴∠PCG=∠PCE
而直角三角△PCG与直
∴PD-PE=PD-PG=GD 而GD=CF
PD-PE=CF
过P点作PG⊥CF 交CF于G 则FG=PD PG∥AB ∠GPC=∠B
∵∠B=∠ACB ∴∠GPC=∠ACB △PGC与△CEP同为直角三角形且共斜边PC
∴△PGC≌△CEP CG=PE
∴PD+PE=FG+CG=CF
P点在BC延长线上:
过C点作CG ⊥PD 交PD于G 则GD=CF CG∥AB ∠PCG=∠B
∵∠B=∠ACB ∠ACB=∠PCE ∴∠PCG=∠PCE
而直角三角△PCG与直
∴PD-PE=PD-PG=GD 而GD=CF
PD-PE=CF
展开全部
P点在BC上:
过P点作PG⊥CF 交CF于G 则FG=PD PG∥AB ∠GPC=∠B
∵∠B=∠ACB ∴∠GPC=∠ACB △PGC与△CEP同为直角三角形且共斜边PC
∴△PGC≌△CEP CG=PE
∴PD+PE=FG+CG=CF
P点在BC延长线上:
过C点作CG ⊥PD 交PD于G 则GD=CF CG∥AB ∠PCG=∠B
∵∠B=∠ACB ∠ACB=∠PCE ∴∠PCG=∠PCE
而直角三角形△PCG与直角三角形△PCE共斜边PC
∴△PCG≌△PCE PG=PE
∴PD-PE=PD-PG=GD 而GD=CF
∴PD-PE=CF
过P点作PG⊥CF 交CF于G 则FG=PD PG∥AB ∠GPC=∠B
∵∠B=∠ACB ∴∠GPC=∠ACB △PGC与△CEP同为直角三角形且共斜边PC
∴△PGC≌△CEP CG=PE
∴PD+PE=FG+CG=CF
P点在BC延长线上:
过C点作CG ⊥PD 交PD于G 则GD=CF CG∥AB ∠PCG=∠B
∵∠B=∠ACB ∠ACB=∠PCE ∴∠PCG=∠PCE
而直角三角形△PCG与直角三角形△PCE共斜边PC
∴△PCG≌△PCE PG=PE
∴PD-PE=PD-PG=GD 而GD=CF
∴PD-PE=CF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询