已知数列{an}的前n项和为Sn,且an=12(3n+Sn)对一切正整数n成立(1)求出:a1,a2,a3的值(2)证明:数

已知数列{an}的前n项和为Sn,且an=12(3n+Sn)对一切正整数n成立(1)求出:a1,a2,a3的值(2)证明:数列{3+an}是等比数列,并求出数列{an}的... 已知数列{an}的前n项和为Sn,且an=12(3n+Sn)对一切正整数n成立(1)求出:a1,a2,a3的值(2)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;(3)设bn=n3an,求数列{bn}的前n项和Bn;数列{an}中是否存在构成等差数列的四项?若存在求出一组;否则说明理由. 展开
 我来答
烛海兴3394
推荐于2016-02-03 · 超过71用户采纳过TA的回答
知道答主
回答量:117
采纳率:100%
帮助的人:138万
展开全部
(1)解:由an=
1
2
(3n+Sn)可得Sn=2an-3n,故an+1=Sn+1-Sn=2an+3
∵a1=
1
2
(3+S1),∴a1=3,∴a2=9,a3=21;
(2)证明:由待定系数法得an+1+3=2(an+3)
又a1+3=6≠0
∴数列{an+3}是以6为首项,2为公比的等比数列.
∴an+3=6×2n-1
∴an=3(2n-1).
(3)解:由(2)可得bn=n2n-n,
∴Bn=1×21+2×22+3×23+…+n×2n-(1+2+3+…+n)   ①
∴2Bn=1×22+2×23+3×24+…+n×2n+1-2(1+2+3+…+n)   ②
①-②得,-Bn=2+(22+23+…+2n)+
n(n+1)
2

化简可得Bn=2+(n-1)2n+1-
n(n+1)
2

假设数列{an}存在构成等差数列的四项依次为:am、an、ap、aq(m<n<p<q)
则3(2m-1)+3(2q-1)=3(2n-1)+3(2p-1)∴2m+2q=2n+2p
上式两边同除以2m,则1+2q-m=2n-m+2p-m
∵m、n、p、q∈N*,且m<n<p<q,
∴上式左边是奇数,右边是偶数,相矛盾.
∴数列{an}不存在构成等差数列的四项.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式