6个回答
展开全部
在数学中,e是极为常用的超越数之一
它通常用作自然对数的底数,即:In(x)=以e为底x的对数。
自然对数:当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828... 它用e表示,以e为底数的对数通常用于㏑,而且e还是一个超越数。 e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达:φkρ=αe其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环数。
它通常用作自然对数的底数,即:In(x)=以e为底x的对数。
自然对数:当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。它是个无限不循环小数。其值约等于2.718281828... 它用e表示,以e为底数的对数通常用于㏑,而且e还是一个超越数。 e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达:φkρ=αe其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环数。
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
符号e在数学中代表自然常数,像π一样代表的一个数值,它们都是无理数。
和e相等的式子是
e=1+1/(1!)+1/(2!)+1/(3!)+1/(4!)+...+1/(n!)+... (无限多项相加的结果)
其中 n!=1*2*3*4*...*(n-1)*n.
和e相等的式子是
e=1+1/(1!)+1/(2!)+1/(3!)+1/(4!)+...+1/(n!)+... (无限多项相加的结果)
其中 n!=1*2*3*4*...*(n-1)*n.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
数学常数e是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。它的数值约是(小数点后100位):
e ≈ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274
就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
e ≈ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274
就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-10-10
展开全部
自然常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询