已知:△ABC为等边三角形,为射线AC上一点,D为射线CB上一点,AD=DE.(1)如图1,当点D为线段BC的中点,

已知:△ABC为等边三角形,为射线AC上一点,D为射线CB上一点,AD=DE.(1)如图1,当点D为线段BC的中点,点在AC的延长线上时,求证:BD+AB=AE;(2)如... 已知:△ABC为等边三角形,为射线AC上一点,D为射线CB上一点,AD=DE.(1)如图1,当点D为线段BC的中点,点在AC的延长线上时,求证:BD+AB=AE;(2)如图2,当点D为线段BC上任意一点,点在AC的延长线上时,(1)的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)如图3,当点D在线段CB的延长线上,点在线段AC上时,请直接写出BD、AB、AE的数量关系. 展开
 我来答
帛乃0E3bff
2014-09-17 · 超过62用户采纳过TA的回答
知道答主
回答量:185
采纳率:100%
帮助的人:57.5万
展开全部
解答:证明:(1)如图1,

∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠B=∠ACB=60°,
∵点D为线段BC的中点,
∴BD=CD,∠CAD=
1
2
∠BAC=30°,
∵AD=AE,
∴∠E=∠CAD=30°,
∵∠ACB=∠E+∠CDE,
∴∠CDE=60°-30°=30°,
∴∠CDE=∠E,
∴CD=CE,
∴AE=AC+CE=AB+CD=AB+BD.
(2)成立,理由如下:
如图2,在AB上取BH=BD,连接DH,

∵BH=BD,∠B=60°,
∴△BDH为等边三角形,AB-BH=BC-BD即AH=DC,
∴∠BHD=60°,BD=DH,
∵AD=DE,
∴∠E=∠CAD,
∴∠BAC-∠CAD=∠ACB-∠E即∠BAD=∠CDE,
∵∠BHD=60°,∠ACB=60°,
∴180°-∠BHD=180°-∠ACB即∠AHD=∠DCE,
∵∠BAD=∠CDE,AD=DE,∠AHD=∠DCE,
在△AHD和△DCE,
∠BAD=∠CDE
∠AHD=∠DCE
AD=DE

∴△AHD≌△DCE(AAS),
∴DH=CE,
∴BD=CE,
∴AE=AC+CE=AB+BD,
(3)AB=BD+AE,
如图3,在AB上取AF=AE,连接DF,

∵△ABC为等边三角形,
∴∠BAC=∠ABC=60°,
∴△AFE是等边三角形,
∴∠FAE=∠FEA=∠AFE=60°,
∴EF∥BC,
∴∠EDB=∠DEF,
∵AD=DE,
∴∠DEA=∠DAE,
∴∠DEF=∠DAF,
∵DF=DF,AF=EF,
在△AFD和△EFD中,
AD=DE
DF=DF
AF=EF

∴△AFD≌△EFD(SSS)
∴∠ADF=∠EDF,∠DAF=∠DEF,
∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,
∵∠EDB=∠DEF,
∴∠FDB=∠DFB,
∴DB=BF,
∵AB=AF+FB,
∴AB=BD+AE.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式