若函数fx =cos3x–acosx在区间π/3.π/2上单调函数则a的取值范围
当函数fx =cos3x–acosx在区间π/3.π/2上单调递减,f(x)'=<0,a>=-3;当函数fx =cos3x–acosx在区间π/3.π/2上单调递增,f(x)'>=0, a=<-3。
函数具有单调性不是针对定义域的子区间而言。例反比例函数是一个具有单调性的函数,而不是一个单调函数,因为在反比例函数的定义域上,并不呈现整体的单调性。
单调函数只是单调性函数中特殊的一种。区间具有单调性的函数并不一定是单调函数,而单调函数的子区间上一定具有单调性。具有单调性函数可以根据区间不同而单调性不同。
扩展资料:
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1>x2时都有f(x1)≥f(x2),那么f(x)在这个区间上是增函数(另一说法为单调不减函数)。
如果f(x1)>f(x2),那么就说f(x)在这个区间上是严格增函数(另一种说法是增函数)。如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1>x2时都有f(x1)≤f(x2)。
f(x)在这个区间上是减函数(另一种说法为单调不增函数)。如果f(x1)<f(x2),那么就说f(x)在这个区间上是严格减函数(另一种说法是减函数)。
参考资料来源:百度百科-单调函数
函数在(π/3,π/2)上单调,f(x)'=<0, a>=-3(单调减)
或f(x)'>=0, a=<-3(单调增)
2015-04-22 · 知道合伙人教育行家