八年级数学题目!在线等!!!火速求!!!!!
如图1,点P为∠ABC角平分线上的一点,D点和E点分别在AB和BC上,且PD=PE,BE不等于BD。1)判断∠ABC与∠DPE的数量关系,并证明你的结论。2)如图2,过点...
如图1,点P为∠ABC角平分线上的一点,D点和E点分别在AB和BC上,且PD=PE,BE不等于BD。
1)判断∠ABC与∠DPE的数量关系,并证明你的结论。
2)如图2,过点P作PF⊥AB于F点,写出BD+BE与BF之间的数量关系并证明
0.0 展开
1)判断∠ABC与∠DPE的数量关系,并证明你的结论。
2)如图2,过点P作PF⊥AB于F点,写出BD+BE与BF之间的数量关系并证明
0.0 展开
2个回答
展开全部
BE不等于BD。总要有一个大的,我们设BE大一些。则我们引PM垂直于BE交BE于M,
引PF垂直于BA交BA于F。在直角△PDF与△直角PEM中,PF=PM(P在角平分线上),
且PD=PE(已知),所以两个三角形全等。对应角FPD=角MPE,
在含有两个直角的四边形AMPF中,内对角FBM加上角FPM=180度。
而角FPM=角DPE,(刚才已经推出:二对应角相等,等量加等量)。
所以,题目的第一问是二角之和为180度。
由第一问的推导,可知DF=EM,所以,BD+BE=BF的二倍。
引PF垂直于BA交BA于F。在直角△PDF与△直角PEM中,PF=PM(P在角平分线上),
且PD=PE(已知),所以两个三角形全等。对应角FPD=角MPE,
在含有两个直角的四边形AMPF中,内对角FBM加上角FPM=180度。
而角FPM=角DPE,(刚才已经推出:二对应角相等,等量加等量)。
所以,题目的第一问是二角之和为180度。
由第一问的推导,可知DF=EM,所以,BD+BE=BF的二倍。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询