
设斜率为2的直线L过抛物线y²=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,
设斜率为2的直线L过抛物线y²=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为?...
设斜率为2的直线L过抛物线y²=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为?
展开
1个回答
展开全部
设直线L为:y=2x+b, 由题意得抛物线的焦点F为(a/4 ,0)
∵直线L过焦点F(a/4,0)
∴0=2×(a/4) + b
b=-a/2
∴直线L为:y=2x - a/2
∵直线L和y轴交于点A
∴点A的坐标为(0,-a/2)
S△OAF=(1/2)×|-a/2|×(a/4)=(a^2)/16=4
a=±8
∴抛物线方程为y^2 =8x 或 y^2=-8x
∵直线L过焦点F(a/4,0)
∴0=2×(a/4) + b
b=-a/2
∴直线L为:y=2x - a/2
∵直线L和y轴交于点A
∴点A的坐标为(0,-a/2)
S△OAF=(1/2)×|-a/2|×(a/4)=(a^2)/16=4
a=±8
∴抛物线方程为y^2 =8x 或 y^2=-8x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询