已知函数f(x)=e^x一ax十1,(a∈r),若曲线y=f(x)在点(0,f(0))处的切线与

线x+ey+1=0垂直,求a的值... 线x+ey+1=0垂直,求a的值 展开
 我来答
成都新东方厨师学校
2015-06-23 · TA获得超过5.2万个赞
知道大有可为答主
回答量:7531
采纳率:87%
帮助的人:2321万
展开全部
(Ⅰ)由f(x)=x-1+
a
e x
,得f′(x)=1-
a
e x
,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,
∴f′(1)=0,即1-
a
e
=0,解得a=e.
(Ⅱ)f′(x)=1-
a
e x

①当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以f(x)无极值;
②当a>0时,令f′(x)=0,得e x =a,x=lna,
x∈(-∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;
∴f(x)在∈(-∞,lna)上单调递减,在(lna,+∞)上单调递增,
故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.
综上,当当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.
(Ⅲ)当a=1时,f(x)=x-1+
1
e x
,令g(x)=f(x)-(kx-1)=(1-k)x+
1
e x

则直线l:y=kx-1与曲线y=f(x)没有公共点,
等价于方程g(x)=0在R上没有实数解.
假设k>1,此时g(0)=1>0,g(
1
k-1
)=-1+
1
e
1
k-1

<0,
又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.
又k=1时,g(x)=
1
e x
>0,知方程g(x)=0在R上没有实数解,
所以k的最大值为1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式