关于微积分的几个题
∫[cos2x/cos²xsin²x]dx=∫[(2cos²x-1)/cos²xsin²x]dx=2∫(1/sin²x)dx-(1/4)∫(1/sin²2x)dx
=-2cotx+(1/8)cot2x+c
∫xcosxdx=∫xd(sinx)=xsinx-∫sinxdx=xsinx+cosx+c
∫【-2,2】[x²√(4-x²)]dx=2∫【-2,2】{x²√[1-(x/2)²]}dx
【令x/2=sinu,则x=2sinu,dx=2cosudu;x=-2时u=-π/2;x=2时u=π/2】
=8∫【-π/2.π/2】sin²ucosudu=8∫【-π/2,π/2】sin²ud(sinu)=[(8/3)sin³u]【-π/2,π/2】
=(8/3)(1+1)=16/3;
∬【D】e^(-x²-y²)dxdy=∫e^(-x²)dx∫e^(-y²)dy【请给出积分域D,不然无法求解】
∬【D】[(siny)/y]dxdy=∫【0,1】dx∫【x,1】[(siny)/y]dy【令siny=u,则y=arcsinu;
dy=du/√(1-u²);y=x时u=sinx;y=1时u=sin1】
=∫【0,1】dx∫【sinx,sin1】[u/√(1-u²)]du
=∫【0,1】dx[-(1/2)∫【sinx,sin1】d(1-u²)/√(1-u²)]
=-(1/2)∫【0,1】[2√(1-u²)]【sinx,sin1】dx
=-[∫【0,1】[√(1-sin²1)-√(1-sin²x)]dx=-[∫【0,1】[cos1-cosx]dx
=-[xcos1-sinx]【0,1】=[sinx-xcos1]【0,1】=sin1-cos1.