已知函数f(x)=x4+mx2+5,且f`(2)=24. (1)求m的值 (2)求函数f(x)在区间【-2,2】上的最大值和最小值

要详细解题过程... 要详细解题过程 展开
盛夏瞳孔
2011-10-11 · TA获得超过1220个赞
知道小有建树答主
回答量:649
采纳率:100%
帮助的人:511万
展开全部
对f(x)求导,得f'(x)=4x^3+2mx,f'(2)=4×2^3+2m×2=24,故m=-2。
f(x)=x^4-2x^2+5,
当x=-1或1时,f(x)min=4 当x=-2或2时,f(x)max=13
因此,f(x)在区间[-2,2]上的最大值为13,最小值为4。
谢红其
2011-10-11 · TA获得超过810个赞
知道小有建树答主
回答量:539
采纳率:0%
帮助的人:306万
展开全部
f(x)=x4+mx2+5
f`(x)=4x3+2mx
因为 f`(2)=24=32+2m 则m=-2
所以f(x)=x^4-2x^2+5=(x^2-1)^2+4
f`(x)=4x3-4x=0时 x=0 ,x=士1
因为x∈【-2,2】
所以x∈【-2,-1】 f`(x)=4x3-4x<0 f(x)为减函数
x∈【-1,0】 f`(x)=4x3-4x>0 f(x)为增函数
x∈【0,1】 f`(x)=4x3-4x<0 f(x)为减函数
x∈【1,2】 f`(x)=4x3-4x>0 f(x)为增函数
则x=0或者x=士1时为f(x)的极点
所以当x=士1时f(x)为极小值也是最小值 则f(x)min=f(士1)=4
f(x)max= f(士2)=13
因此,f(x)在区间[-2,2]上的最大值为13,最小值为4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
风草zhiyuan
2011-10-11
知道答主
回答量:37
采纳率:0%
帮助的人:21.6万
展开全部
f'(x)=4x^3+2mx;f'(2)=32+4m=24.所以,m=-2;
f(x)=x^4-2x^2+5=(x^2-1)^2+4
因为-2<=x<=2,所以0<=x^2<=4;
所以f(x)在区间[-2,2]的最大值为3^2+4=13,最小值为4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式