已知抛物线y=x2+bx+c交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D.
已知抛物线y=x2+bx+c交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D.(1)求b、c的值并写出抛物线的对称轴;(2)连接BC,过点O作直线OE⊥B...
已知抛物线y=x2+bx+c交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D.
(1)求b、c的值并写出抛物线的对称轴;
(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.求证:四边形ODBE是等腰梯形;
(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的 13?若存在,求点Q的坐标;若不存在,请说明理由. 展开
(1)求b、c的值并写出抛物线的对称轴;
(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.求证:四边形ODBE是等腰梯形;
(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的 13?若存在,求点Q的坐标;若不存在,请说明理由. 展开
2个回答
展开全部
(1)、把A、B带入抛物线,解得b=-4,c=3
所以y=x^2-4x+3;对称轴为X=2
(2)、由y=x^2-4x+3可得
C(0,3);D(2,-1) 因为B(3,0)
所以OB=OC即△0BC为等腰直角三角形,且∠DBO=45°
又因为OE⊥BC,E的横坐标为2,所以E(2,2)且∠EOB=45°
所以EB=根号5,OD=根号5。。DB∥OB
所以四边形ODBE是等腰梯形
(3)、S梯形ODBE=S△OBE+S△OBD=4.5
所以S△OBQ=1.5
又因为OB=3,所以OB边上的高=1即Q点纵坐标的绝对值等于1
这样的点存在有3个Q1(2,-1)Q2(2-√2,1)Q3(2+√2,1)
所以y=x^2-4x+3;对称轴为X=2
(2)、由y=x^2-4x+3可得
C(0,3);D(2,-1) 因为B(3,0)
所以OB=OC即△0BC为等腰直角三角形,且∠DBO=45°
又因为OE⊥BC,E的横坐标为2,所以E(2,2)且∠EOB=45°
所以EB=根号5,OD=根号5。。DB∥OB
所以四边形ODBE是等腰梯形
(3)、S梯形ODBE=S△OBE+S△OBD=4.5
所以S△OBQ=1.5
又因为OB=3,所以OB边上的高=1即Q点纵坐标的绝对值等于1
这样的点存在有3个Q1(2,-1)Q2(2-√2,1)Q3(2+√2,1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询