设函数f(x)=a*根号下(1-x^2)+根号下(1+x)+根号下(1-x)的最大值为g(a)
(1).设t=根号下(1+x)+根号下(1-x),求t的取值范围,并把f(x)的表示为t的函数m(t);(2).求g(a)(3)试求满足g(a)=g(1/a)的所有实数a...
(1).设t=根号下(1+x)+根号下(1-x),求t的取值范围,并把f(x)的表示为t的函数m(t);
(2).求g(a)
(3)试求满足g(a)=g(1/a)的所有实数a.
不要给我从网上的粘贴 要不解释下 网上说的 :
所以:√(1-x²)=√[(1+x)(1-x)]=(t²-2)/2(因为此处定义域是符合要求的,所以可以拆分)
f(x)=m(t)=a(t²-2)/2+t (√2≤t≤2) 这部是怎么的出来的
还有m(t)=a/2t²+t-a 又是什么东西 展开
(2).求g(a)
(3)试求满足g(a)=g(1/a)的所有实数a.
不要给我从网上的粘贴 要不解释下 网上说的 :
所以:√(1-x²)=√[(1+x)(1-x)]=(t²-2)/2(因为此处定义域是符合要求的,所以可以拆分)
f(x)=m(t)=a(t²-2)/2+t (√2≤t≤2) 这部是怎么的出来的
还有m(t)=a/2t²+t-a 又是什么东西 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询