如图1,AB为圆O的直径,AD与圆O相切于点A,DE与圆O相切于点E,点C位DE延长线上一点,CE=CB。证BC为切线
连接AE,AE的延长线与BC的延长线交于点G(如图2)若AB=2√5,AD=2,求线段BC和EG的长...
连接AE,AE的延长线与BC的延长线交于点G(如图2)若AB=2√5,AD=2,求线段BC和EG的长
展开
4个回答
展开全部
过点D作DF⊥BC于点F,连OE、OC,
则四边形ABFD是矩形,BF=AD=2,DF=AB=2倍的根号5.
∵AD、DC、BC分别切⊙O于点A、E、B,
∴DA=DE,CE=CB.
设BC为x,则CF=x-2,DC=x+2.
在Rt△DFC中,
(x+2)^2-(x-2)^2=(2倍的根号5)^2,
解得x= 5/2.
∴BC= 5/2.
∵AD//BC
∴∠ADE=GCE,∠DAE=∠G
∴△ADE、GCE相似
∴AE/GE=DE/CE
∴AE/GE=2/ 5/2
既AE:GE=4:5
根据勾股定理
AG^2=AB^2+BG^2
∴AG=3倍的根号5
AE:GE=4:5
∴AE=4倍的根号5/3
GE=5倍的根号5/3
累死了~一定要采纳哦!
则四边形ABFD是矩形,BF=AD=2,DF=AB=2倍的根号5.
∵AD、DC、BC分别切⊙O于点A、E、B,
∴DA=DE,CE=CB.
设BC为x,则CF=x-2,DC=x+2.
在Rt△DFC中,
(x+2)^2-(x-2)^2=(2倍的根号5)^2,
解得x= 5/2.
∴BC= 5/2.
∵AD//BC
∴∠ADE=GCE,∠DAE=∠G
∴△ADE、GCE相似
∴AE/GE=DE/CE
∴AE/GE=2/ 5/2
既AE:GE=4:5
根据勾股定理
AG^2=AB^2+BG^2
∴AG=3倍的根号5
AE:GE=4:5
∴AE=4倍的根号5/3
GE=5倍的根号5/3
累死了~一定要采纳哦!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)连接OE,OC;(1分)
∵CB=CE,OB=OE,OC=OC
∴△OEC≌△OBC(SSS)
∴∠OBC=∠OEC (2分)
又∵DE与⊙O相切于点E
∴∠OEC=90° (3分)
∴∠OBC=90°
∴BC为⊙O的切线.(4分)
(2)过点D作DF⊥BC于点F,
∵AD,DC,BG分别切⊙O于点A,E,B
∴DA=DE,CE=CB,
设BC为x,则CF=x-2,DC=x+2,
在Rt△DFC中, ,
解得: ;(6分)
∵AD∥BG,
∴∠DAE=∠EGC,
∵DA=DE,
∴∠DAE=∠AED;
∵∠AED=∠CEG,
∴∠EGC=∠CEG,
∴CG=CE=CB= ,(7分)
∴BG=5,
∴AG= ;(8分)
∵CB=CE,OB=OE,OC=OC
∴△OEC≌△OBC(SSS)
∴∠OBC=∠OEC (2分)
又∵DE与⊙O相切于点E
∴∠OEC=90° (3分)
∴∠OBC=90°
∴BC为⊙O的切线.(4分)
(2)过点D作DF⊥BC于点F,
∵AD,DC,BG分别切⊙O于点A,E,B
∴DA=DE,CE=CB,
设BC为x,则CF=x-2,DC=x+2,
在Rt△DFC中, ,
解得: ;(6分)
∵AD∥BG,
∴∠DAE=∠EGC,
∵DA=DE,
∴∠DAE=∠AED;
∵∠AED=∠CEG,
∴∠EGC=∠CEG,
∴CG=CE=CB= ,(7分)
∴BG=5,
∴AG= ;(8分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∩○∩我不会的啊。百度一下吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询