求函数f(x)=4x^2-4ax+a^2-2a+2在区间[0,2]上的最值

瑞极天锋
2011-10-12 · TA获得超过204个赞
知道小有建树答主
回答量:112
采纳率:0%
帮助的人:78.4万
展开全部
首先函数是一元二次方程;求最值,二话不说先来求一次导数或画图看中线位置,看你个人喜好了,拿出单调性,求导得:8x-4a=y' ; 题目要求求最值,下面分类讨论:一,y'在[0,2]上恒小于零,即函数在[0,2]单调减,拿出最值;二,恒大于零,即函数在[0,2]上单调增;三便是有解了,有解的话又要分了中线的位置在1的左侧还是右侧,不管怎样最小值肯定是在x=a/2处,中线在1左侧就在x=2处得出最大值,若在右侧就在x=0处得出最大值;
当a(-无穷,0]时,最小值a^2-2a+2,最大值a^2-10a+18
当a(0,2)时,最小值2-2a,最大值a^2-10a+18
当a[2,4)时,最小值2-2a,最大值a^2-2a+2
当a[4,正无穷)时,最小值a^2-10a+18,最大值a^2-2a+2
dennis_zyp
2011-10-12 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
f(x)=4(x-a/2)^2-2a+2
开口向上,对称轴为x=a/2
当a/2<=0, 即a<0, fmin=f(0)=a^2-2a+2, fmax=f(2)=a^2-10a+18
当0<a/2<1, 即 0<a<2, fmin=f(a/2)=-2a+2, fmax=f(2)=a^2-10a+18
当1=<a/2<2, 即 2=<a<4, fmin=f(a/2)=-2a+2, fmax=f(0)=a^2-2a+2
当a/2>=2, 即a>=4, fmin=f(2)=a^2-10a+18, fmax=f(0)=a^2-2a+2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式