求过直线y=-x-4与圆x的平方+y的平方+4x-2y-4=0的交点且与直线y-x=0相切的圆的方程 (要有详细解题过程)
1个回答
展开全部
圆: x² + y² +4x - 2y -4 = 0
x² + 4x + 4 -4 + y² - 2y + 1 -1 -4 =0
(x+2)² + (y-1)² = 9 (1)
y = -x -4
y -1 = -x -5 (2)
(2)代入 (1), x² + 7x + 10 = 0, (x+5)(x+2) = 0
x1 = -5, y1 = 1
x2 = -2, y2 = -2
交点A(-5, 1), B(-2, -2)
点B(-2, -2)在直线y-x=0上,所以B是所求圆与直线y-x=0的切点,设圆心为C, 则CB与直线y-x=0(斜率为1)垂直,斜率为-1。CB的方程为y+2 = -(x+2) (点斜式), y = -x-4
设C(a, -a-4), |CA|² = |CB|²
(a+5)² + (a+5)² = (a+2)² + (a+2)²
a = -7/2
C(-7/2, -1/2)
半径=|CA| = √(a+2)² + (a+2)² = (√2)|a+2| = (3√2)/2
圆的方程: (x +7/2)²+ (y+1/2)² = 9/2
x² + 4x + 4 -4 + y² - 2y + 1 -1 -4 =0
(x+2)² + (y-1)² = 9 (1)
y = -x -4
y -1 = -x -5 (2)
(2)代入 (1), x² + 7x + 10 = 0, (x+5)(x+2) = 0
x1 = -5, y1 = 1
x2 = -2, y2 = -2
交点A(-5, 1), B(-2, -2)
点B(-2, -2)在直线y-x=0上,所以B是所求圆与直线y-x=0的切点,设圆心为C, 则CB与直线y-x=0(斜率为1)垂直,斜率为-1。CB的方程为y+2 = -(x+2) (点斜式), y = -x-4
设C(a, -a-4), |CA|² = |CB|²
(a+5)² + (a+5)² = (a+2)² + (a+2)²
a = -7/2
C(-7/2, -1/2)
半径=|CA| = √(a+2)² + (a+2)² = (√2)|a+2| = (3√2)/2
圆的方程: (x +7/2)²+ (y+1/2)² = 9/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询