求方程y"+2y'+2y=xe^-x满足初始条件x=0时y=0,y'=0的特解 5

求方程y"+2y'+2y=xe^-x满足初始条件x=0时y=0,y'=0的特解... 求方程y"+2y'+2y=xe^-x满足初始条件x=0时y=0,y'=0的特解 展开
 我来答
152280274
推荐于2018-03-21
知道答主
回答量:16
采纳率:0%
帮助的人:1.8万
展开全部
∵齐次方程y''+y=0的特征方程是r²+1=0,则r=±i (复数根)
∴此齐次方程的通解是y=C1cosx+C2sinx (C1,C2是积分常数)
设原微分方程的特解是y=(Ax+B)e^x
∵y'=Ae^x+y
y''=Ae^x+y'=2Ae^x+y
代入原微分方程得2Ae^x+y+y=xe^x
==>2Ae^x+2(Ax+B)e^x=xe^x
==>2Axe^x+(2A+2B)e^x=xe^x
==>2A=1,2A+2B=0 (比较同次幂的系数)
==>A=1/2,B=-1/2
∴原微分方程的特解是y=(x-1)e^x/2
故原微分方程的通解是y=C1cosx+C2sinx+(x-1)e^x/2 (C1,C2是积分常数)
有机会刚
2018-03-21
知道答主
回答量:1
采纳率:0%
帮助的人:893
引用152280274的回答:
∵齐次方程y''+y=0的特征方程是r²+1=0,则r=±i (复数根)
∴此齐次方程的通解是y=C1cosx+C2sinx (C1,C2是积分常数)
设原微分方程的特解是y=(Ax+B)e^x
∵y'=Ae^x+y
y''=Ae^x+y'=2Ae^x+y
代入原微分方程得2Ae^x+y+y=xe^x
==>2Ae^x+2(Ax+B)e^x=xe^x
==>2Axe^x+(2A+2B)e^x=xe^x
==>2A=1,2A+2B=0 (比较同次幂的系数)
==>A=1/2,B=-1/2
∴原微分方程的特解是y=(x-1)e^x/2
故原微分方程的通解是y=C1cosx+C2sinx+(x-1)e^x/2 (C1,C2是积分常数)
展开全部
原方程的齐次方程应该是y”+2y'+2y=0吧…………
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式