求方程y"+2y'+2y=xe^-x满足初始条件x=0时y=0,y'=0的特解 5
展开全部
∵齐次方程y''+y=0的特征方程是r²+1=0,则r=±i (复数根)
∴此齐次方程的通解是y=C1cosx+C2sinx (C1,C2是积分常数)
设原微分方程的特解是y=(Ax+B)e^x
∵y'=Ae^x+y
y''=Ae^x+y'=2Ae^x+y
代入原微分方程得2Ae^x+y+y=xe^x
==>2Ae^x+2(Ax+B)e^x=xe^x
==>2Axe^x+(2A+2B)e^x=xe^x
==>2A=1,2A+2B=0 (比较同次幂的系数)
==>A=1/2,B=-1/2
∴原微分方程的特解是y=(x-1)e^x/2
故原微分方程的通解是y=C1cosx+C2sinx+(x-1)e^x/2 (C1,C2是积分常数)
∴此齐次方程的通解是y=C1cosx+C2sinx (C1,C2是积分常数)
设原微分方程的特解是y=(Ax+B)e^x
∵y'=Ae^x+y
y''=Ae^x+y'=2Ae^x+y
代入原微分方程得2Ae^x+y+y=xe^x
==>2Ae^x+2(Ax+B)e^x=xe^x
==>2Axe^x+(2A+2B)e^x=xe^x
==>2A=1,2A+2B=0 (比较同次幂的系数)
==>A=1/2,B=-1/2
∴原微分方程的特解是y=(x-1)e^x/2
故原微分方程的通解是y=C1cosx+C2sinx+(x-1)e^x/2 (C1,C2是积分常数)
引用152280274的回答:
∵齐次方程y''+y=0的特征方程是r²+1=0,则r=±i (复数根)
∴此齐次方程的通解是y=C1cosx+C2sinx (C1,C2是积分常数)
设原微分方程的特解是y=(Ax+B)e^x
∵y'=Ae^x+y
y''=Ae^x+y'=2Ae^x+y
代入原微分方程得2Ae^x+y+y=xe^x
==>2Ae^x+2(Ax+B)e^x=xe^x
==>2Axe^x+(2A+2B)e^x=xe^x
==>2A=1,2A+2B=0 (比较同次幂的系数)
==>A=1/2,B=-1/2
∴原微分方程的特解是y=(x-1)e^x/2
故原微分方程的通解是y=C1cosx+C2sinx+(x-1)e^x/2 (C1,C2是积分常数)
∵齐次方程y''+y=0的特征方程是r²+1=0,则r=±i (复数根)
∴此齐次方程的通解是y=C1cosx+C2sinx (C1,C2是积分常数)
设原微分方程的特解是y=(Ax+B)e^x
∵y'=Ae^x+y
y''=Ae^x+y'=2Ae^x+y
代入原微分方程得2Ae^x+y+y=xe^x
==>2Ae^x+2(Ax+B)e^x=xe^x
==>2Axe^x+(2A+2B)e^x=xe^x
==>2A=1,2A+2B=0 (比较同次幂的系数)
==>A=1/2,B=-1/2
∴原微分方程的特解是y=(x-1)e^x/2
故原微分方程的通解是y=C1cosx+C2sinx+(x-1)e^x/2 (C1,C2是积分常数)
展开全部
原方程的齐次方程应该是y”+2y'+2y=0吧…………
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询