如图,直角三角形ABC中,角ACB=90度,AC=6,BC=8,O为BC上一点,以O为圆心,OC为半径作圆与AB切于点D,

求圆O的半径... 求圆O的半径 展开
潘朵拉的彼岸花
推荐于2016-12-02 · TA获得超过183个赞
知道答主
回答量:60
采纳率:0%
帮助的人:50.2万
展开全部
解:设半径为R
设⊙O与AB切与D点,燃颤连接OD AO 则∠ODA=90°(OD⊥AB)
∵OC=OD=R
∴点R在∠BAC的角平分线上
∴AO是∠BAC的角平分线
∴∠OAC=∠OAD
∵∠ACB=∠ODA=90° AO是公共边
∴△AOC≌罩扒△AOD(AAS)
∴AD=AC=6
∵AC=6 BC=8 ∠皮闷败ACB=90°
∴AB=√(AC²+BC²)=10
∴BD=AB-AD=4
∵OC=R BC =8
∴OB=8-R
∵OD⊥AB
∴OB²=BD²+OD²
即(8-R)²=4²+R²
解得R=3
∴⊙O的半径为3
追问
谢谢!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式